Palabras clave
Entorno virtual, aprendizaje basado en juegos, aprendizaje automático, registro de mirada, extracción de características, neuroeducación
Resumen
Actualmente, el uso de los datos del seguimiento de la mirada en entornos de aprendizaje de Realidad Virtual inmersiva (iVR) está destinado a ser una herramienta fundamental para maximizar los resultados de aprendizaje, dada la naturaleza poco intrusiva del eye-tracking y su integración en las gafas comerciales de Realidad Virtual. Pero, antes de que se pueda generalizar el uso del eye-tracking en entornos de aprendizaje, se deben identificar las tecnologías más adecuadas para el procesamiento de datos. Esta investigación propone el uso de técnicas de aprendizaje automático para este fin, evaluando sus capacidades para clasificar la calidad del entorno de aprendizaje y predecir el rendimiento de aprendizaje del usuario. Para ello, se ha desarrollado una experiencia docente en iVR para aprender el manejo de un puente-grúa. Con esta experiencia se ha evaluado el rendimiento de 63 estudiantes, tanto en condiciones óptimas de aprendizaje como en condiciones con factores estresores. El conjunto de datos final incluye 25 características, siendo la mayoría series temporales con un tamaño de conjunto de datos superior a 50 millones de puntos. Los resultados muestran que la aplicación de diferentes clasificadores como KNN, SVM o Random Forest tienen una alta precisión a la hora de predecir alteraciones en el aprendizaje, mientras que la predicción del rendimiento del aprendizaje del usuario aún está lejos de ser óptima, lo que abre una nueva línea de investigación futura. Este estudio tiene como objetivo servir como línea de base para futuras mejoras en la precisión de los modelos mediante el uso de técnicas de aprendizaje automático más complejas.
Referencias
Añaños-Carrasco, E. (2015). Eyetracker technology in elderly people: How integrated television content is paid attention to and processed. [La tecnología del «EyeTracker» en adultos mayores: Cómo se atienden y procesan los contenidos integrados de televisión]. Comunicar, 45, 75-83. https://doi.org/10.3916/C45-2015-08
Link DOI | Link Google Scholar
Asish, S.M., Kulshreshth, A.K., & Borst, C.W. (2022). Detecting distracted students in educational VR environments using machine learning on eye gaze data. Computers & Graphics, 109, 75-87. https://doi.org/10.1016/j.cag.2022.10.007
Link DOI | Link Google Scholar
Bowman, D.A., & McMahan, R.P. (2007). Virtual reality: How much immersion is enough? Computer, 40(7), 36-43. https://doi.org/10.1109/MC.2007.257
Link DOI | Link Google Scholar
Checa, D., & Bustillo, A. (2020). A review of immersive virtual reality serious games to enhance learning and training. Multimedia Tools and Applications, 79(9-10), 5501–5527. https://doi.org/10.1007/s11042-019-08348-9
Link DOI | Link Google Scholar
Checa, D., & Bustillo, A. (2022). Grua Rv. http://3dubu.Es/En/Cranevr/
Link Google Scholar
Checa, D., Gatto, C., Cisternino, D., de Paolis, L.T., & Bustillo, A. (2020). A Framework for Educational and Training Immersive Virtual Reality Experiences. In L.T. de-Paolis & P. Bourdot (Eds.), Augmented reality, virtual reality, and computer graphics (pp. 220–228). Springer International Publishing. https://doi.org/10.1007/978-3-030-58468-9_17
Link DOI | Link Google Scholar
Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A.W. (2018). Time series feature extraction on basis of scalable hypothesis tests (tsfresh – A Python package). Neurocomputing, 307, 72-77. https://doi.org/https://doi.org/10.1016/j.neucom.2018.03.067
Link Google Scholar
Christ, M., Kempa-Liehr, A., & Feindt, M. (2016). Distributed and parallel time series feature extraction for industrial big data applications. ArXiv, 1, https://doi.org/10.48550/arXiv.1610.07717.
Link DOI | Link Google Scholar
Cowan, A., Chen, J., Mingo, S., Reddy, S.S., Ma, R., Marshall, S., Nguyen, J.H., & Hung, A.J. (2021). virtual reality vs dry laboratory models: Comparing automated performance metrics and cognitive workload during robotic simulation training. Journal of Endourology, 35(10), 1571-1576. https://doi.org/10.1089/end.2020.1037
Link DOI | Link Google Scholar
Dale, E. (1946). Audiovisual methods in teaching. Dryden Press. https://bit.ly/42aW03X
Link Google Scholar
Dalgarno, B., & Lee, M.J.W. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1). https://doi.org/10.1111/j.1467-8535.2009.01038.x
Link DOI | Link Google Scholar
Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66-69. https://doi.org/10.1126/science.1167311
Link DOI | Link Google Scholar
Deng, Q., Wang, J., Hillebrand, K., Benjamin, C.R., & Soffker, D. (2020). Prediction performance of lane changing behaviors: A study of combining environmental and eye-tracking data in a driving simulator. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3561-3570. https://doi.org/10.1109/TITS.2019.2937287
Link DOI | Link Google Scholar
Duchowski, A. T. (2002). A breadth-first survey of eye-tracking applications. Behavior Research Methods, Instruments, & Computers, 34(4), 455-470. https://doi.org/10.3758/BF03195475
Link DOI | Link Google Scholar
Farran, E., Formby, S., Daniyal, F., Holmes, T., & Herwegen, J. (2016). Route-learning strategies in typical and atypical development; eye-tracking reveals atypical landmark selection in Williams syndrome: Route-learning and eye-tracking. Journal of Intellectual Disability Research, 60(10), 933-944. https://doi.org/10.1111/jir.12331
Link DOI | Link Google Scholar
García-Carrasco, J., Hernández-Serrano, M.J., & Martín-García, A.V. (2015). Plasticity as a framing concept enabling transdisciplinary understanding and research in neuroscience and education. Learning, Media and Technology, 40(2), 152-167. https://doi.org/10.1080/17439884.2014.908907
Link DOI | Link Google Scholar
Gardony, A.L., Lindeman, R.W., & Brunyé, T.T. (2020). Eye-tracking for human-centered mixed reality: Promises and challenges. Proc.SPIE, 11310, 113100T. https://doi.org/10.1117/12.2542699
Link DOI | Link Google Scholar
Glennon, J.M., D’Souza, H., Mason, L., Karmiloff-Smith, A., & Thomas, M.S.C. (2020). Visuo-attentional correlates of Autism Spectrum Disorder (ASD) in children with Down syndrome: A comparative study with children with idiopathic ASD. Research in Developmental Disabilities, 104, 103678. https://doi.org/10.1016/j.ridd.2020.103678
Link DOI | Link Google Scholar
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2008). The WEKA data mining software: An update. SIGKDD Explor. Newsl., 11(1), 10-18. https://doi.org/10.1145/1656274.1656278
Link DOI | Link Google Scholar
Huang, H.M., Rauch, U., & Liaw, S.S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers and Education, 55(3), 1171-1182. https://doi.org/10.1016/j.compedu.2010.05.014
Link DOI | Link Google Scholar
Lapborisuth, P., Koorathota, S., Wang, Q., & Sajda, P. (2021). Integrating neural and ocular attention reorienting signals in virtual reality. Journal of Neural Engineering, 18(6), 066052. https://doi.org/10.1088/1741-2552/ac4593
Link DOI | Link Google Scholar
Ma, X., Yao, Z., Wang, Y., Pei, W., & Chen, H. (2018). Combining brain-computer interface and eye-tracking for high-speed text entry in virtual reality. In Berkovsky & Y. Hijikata (Ed.), IUI ’18: 23rd International Conference on Intelligent User Interfaces (pp. 263-267). https://doi.org/10.1145/3172944.3172988
Link DOI | Link Google Scholar
Martinez, K., Menéndez-Menéndez, M.I., & Bustillo, A. (2021). Awareness, prevention, detection, and therapy applications for depression and anxiety in serious games for children and adolescents: Systematic review. JMIR Serious Games, 9(4), e30482. https://doi.org/10.2196/30482
Link DOI | Link Google Scholar
Mckinney, W. (2011). pandas: A foundational Python library for data analysis and statistics. Python High Performance Science Computer.
Link Google Scholar
Patney, A., Salvi, M., Kim, J., Kaplanyan, A., Wyman, C., Benty, N., Luebke, D., & Lefohn, A. (2016). Towards foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph., 35(6), 1-12. https://doi.org/10.1145/2980179.2980246
Link DOI | Link Google Scholar
Pritchard, A. (2017). Ways of learning: Learning theories for the classroom. Routledge. https://doi.org/10.4324/9781315460611
Link DOI | Link Google Scholar
Rappa, N.A., Ledger, S., Teo, T., Wai Wong, K., Power, B., & Hilliard, B. (2022). The use of eye-tracking technology to explore learning and performance within virtual reality and mixed reality settings: A scoping review. Interactive Learning Environments, 30(7), 1338-1350. https://doi.org/10.1080/10494820.2019.1702560
Link DOI | Link Google Scholar
Rodero, E., & Larrea, O. (2022). Virtual reality with distractors to overcome public speaking anxiety in university students; [Realidad virtual con distractores para superar el miedo a hablar en público en universitarios]. Comunicar, 30(72). https://doi.org/10.3916/C72-2022-07
Link DOI | Link Google Scholar
Shadiev, R., & Li, D. (2022). A review study on eye-tracking technology usage in immersive virtual reality learning environments. Computers & Education, 104681. https://doi.org/10.1016/j.compedu.2022.104681
Link DOI | Link Google Scholar
Sun, Q., Patney, A., Wei, L.Y., Shapira, O., Lu, J., Asente, P., Zhu, S., McGuire, M., Luebke, D., & Kaufman, A. (2018). Towards virtual reality infinite walking: Dynamic saccadic redirection. ACM Transactions on Graphics, 37(4), 1-13. https://doi.org/10.1145/3197517.3201294
Link DOI | Link Google Scholar
Tanaka, Y., Kanari, K., & Sato, M. (2021). Interaction with virtual objects through eye-tracking. In M. Nakajima, J.G. Kim, W.N. Lie, & Q. Kemao (Eds.), International Workshop on Advanced Imaging Technology (IWAIT) 2021 (p. 1176624). SPIE. https://doi.org/10.1117/12.2590989
Link DOI | Link Google Scholar
Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M., Kolar, K., & Woods, E. (2020). Tslearn, A Machine-learning Toolkit for Time Series Data. J. Mach. Learn. Res., 21, 118, 1-6.
Link Google Scholar
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9, 625-636. https://doi.org/10.3758/BF03196322
Link DOI | Link Google Scholar
Wismer, P., Soares, S.A., Einarson, K.A., & Sommer, M.O.A. (2022). Laboratory performance prediction using virtual reality behaviometrics. PloS One, 17(12), e0279320. https://doi.org/10.1371/journal.pone.0279320
Link DOI | Link Google Scholar
Ficha técnica
Recibido: 26-12-2022
Revisado: 25-01-2023
Aceptado: 23-02-2023
OnlineFirst: 30-05-2023
Fecha publicación: 01-07-2023
Tiempo de revisión del artículo : 30 (en días) | Media de tiempo de revisión de los manuscritos del número 76: -6 (en días)
Tiempo de aceptación del artículo: 59 (en días) | Media tiempo aceptación de los manuscritos del número 76: 72 (en días)
Tiempo de edición OnlineFirst: 142 (en días) | Media tiempo edición de los OnlineFirst del número 76: 155 (en días)
Tiempo de publicacicón final del artículo: 187 (en días) | Media tiempo de publicación final de los articulos del número 76: 200 (en días)
Métricas
Métricas de este artículo
Vistas: 42351
Lectura del abstract: 40995
Descargas del PDF: 1356
Métricas completas de Comunicar 76
Vistas: 470468
Lectura del abstract: 459440
Descargas del PDF: 11028
Citado por
Citas en Web of Science
Actualmente no existen citas hacia este documento
Citas en Scopus
Actualmente no existen citas hacia este documento