Audience Participation in TikTok Metadata

Authors

  • Dra. Amparo Huertas-Bailén rofesora titular, Universidad Autónoma de Barcelona (España)
  • Dra. Natalia Quintas-Froufe Profesora titular, Universidade da Coruña (España)
  • Dra. Ana González-Neira Profesora titular, Universidade da Coruña (España)

DOI:

https://doi.org/10.58262/V32I78.7

Keywords:

audience, metadata, participation, TikTok, social media, information

Abstract

With the expansion of digital culture, an in-depth reflection on how to research audiences is necessary. If, formerly, the individual was placed in a social category that defined cultural tastes, now technology identifies patterns of behavior from the direct record of their actions. This text explores the type of knowledge that can be obtained on audience participation on TikTok. We propose a methodology that consists of the analysis of usage metadata. The fieldwork focuses on “Ac2ality”, an information account with 4.4 million followers in Spain. We analysed all videos shared over six weeks of the first quarter of 2023 (n=173). The purpose was to find (a) the degree of the linear correlation between the metadata for the same video and (b) the existence of correlations between metadata and type of video/ content. For each metadatum available with open access (comments, likes, saves, shares and views), four activity levels have been established (low, intermediate, high and very high). The majority trend indicates that the levels obtained by the metadata of the same content are not coincident, that is, a video will have more or less scope according to the observed metadata. The homogeneity of the videos means that only clear correlations between topic and metadata are detected. Topics with less presence can reach high levels of activity.

References

Abidin, C. (2021). Mapping internet celebrity on TikTok: Exploring attention economies and visibility labours. Cultural Science Journal, 12(1), 77-103. https://doi.org/10.5334/csci.140

Andersen, J. (2020). Understanding and Interpreting Algorithms: Toward a Hermeneutics of Algorithms. Media, Culture & Society, 42(7- 8), 1479-1494. https://doi.org/10.1177/0163443720919373

Bucher, T. (2017). The Algorithmic Imaginary: Exploring the Ordinary Affects of Facebook Algorithms. Information, Communication & Society, 20(1), 30 - 44. https://doi.org/10.1080/1369118X.2016.1154086

Comscore. (2023, March 15). Comscore Insights: nuevos tiempos, nuevos consumos, perspectiva 2023. https://bit.ly/43wDsuZ

Dourish, P. (2016). Algorithms and Their Others: Algorithmic Culture in Context. Big Data & Society, 3( 2 ) , 1 – 11. https://doi.o r g /10.1177/ 2 0 53951716 6 6512 8

Estrada-García, S., & Gamir-Ríos, J. (2023). Soft News in Original Videos. Adaptation to Tiktok of the Main Spanish Online Media. Profesional De La Información, 32(2), 320222. https://doi.org/10.3145/epi.2023.mar.22

Fernández Rodríguez, C. J., & Heikkilä, R. (2011). El Debate Sobre El Omnivorismo Cultural. Una Aproximación a Nuevas Tendencias en Sociología Del Consumo. Revista Internacional De Sociología, 69(3), 585-606. https://doi.org /10.3989/ris.2010.04.15

Fisher, E. (2015). ‘You Media’: Audiencing as Marketing in Social Media. Media, Culture & Society, 37(1), 50 - 67. https://doi.or g /10.1177/01634437145490 8 8

Fisher, E., & Mehozay, Y. (2019). How Algorithms See Their Audience: Media Epistemes and the Changing Conception of the Individual. Media, Culture & Society, 41( 8 ) , 1176 -1191. https://doi.org/10.1177/0163443719831598

Flyverbom, M., & Murray, J. (2018). Datastructuring—organizing and Curating Digital Traces Into Action. Big Data & Society, 5(2), 1–12. h t t p s: //d o i.o r g /10.1177/ 2 0 5395171879 9114

Fulgoni, G. M., & Lipsman, A. (2017). Measuring Television in the Programmatic Age: Why Television Measurement Methods Are Shifting Toward Digital. Journal of Advertising Research, 57(1), 10 -14. https://doi.org/10.2501/JAR-2017-009

García-Marín, D., & Salvat-Martinrey, G. (2022). Viralizar la verdad. Factores predictivos del engagement en el contenido verificado en TikTok. Profesional De La Información, 31(2), 310210. https://doi.org/10.3145/epi.2022.mar.10

García-Marín, J., & Serrano-Contreras, I.-J. (2023). (Un) Founded Fear Towards the Algorithm: Youtube Recommendations and Polarisation. C o mu n ic a r, 31(74), 61-70. https://doi.org/10.3916/C74-2023-05

García-Orosa, B., Canavilhas, J., & Vázquez-Herrero, J. (2023). Algorithms and Communication: a Systematized Literature Review. C o mu n ic a r, 31(74), 9-21. https://doi.org/10.3916/C74-2023-01

Hallinan, B., & Striphas, T. (2016). Recommended for You: the Netf lix Prize and the Production of Algorithmic Culture. New Media & Society, 18(1) , 117-1 3 7. https://doi.org/10.1177/1461444814538646

Hartley, J. (2000). Los Usos De La Televisión. Paidós. https://go.revistacomunicar.com/vccDVk

Huertas, A. (2002). La Audiencia Investigada. Gedisa. https://go.revistacomunicar.com/2IeYgE

Huertas, A. (2015). Yo Soy Audiencia. Ciudadanía, Público Y Mercado. UOC Press. https://go.revistacomunicar.com/dJwgaX

IAB. (2023, May 10). Estudio De Redes Sociales. IAB Spain. https://go.revistacomunicar.com/lLOSmV

Jensen, K. B. (2019). The Double Hermeneutics of Audience Research. Television & New Media, 20(2), 142-154. https://doi.o r g / 10 .117 7/ 15 2 74 76 418 81110 3

Jones, C. (2023). How to train your algorithm: the struggle for public control over private audience commodities on Tiktok. Media, Culture & Society, 45(6). https://doi.org/10.1177/01634437231159555

Lawlor, B. (2020). Questioning the legitimacy of data. Information Services & Use, 40(3), 259-272. https://doi.org/10.3233/ISU-200098

Livingstone, S. (2019). Audiences in an Age of Datafication: Critical Questions for Media Research. Television & New Media, 20(2), 170 -183. h t t p s : / /d o i . o r g / 10 .117 7/ 15 2 74 76 418 811118

Lomborg, S., & Kapsch, P. H. (2020). Decoding Algorithms. Media, Culture & Society, 42(5), 745-761. https://doi.or g /10.1177/0163443719855301

Lovink, G. (2019). Tristes Por Diseño: Las Redes Sociales Como Ideología. Consonni. https://doi.org/https://doi.org/10.7203/rd.v1i7.208

Martínez-Estrella, E.-C., Samacá-Salamanca, E., García-Rivero, A., & Cifuentes-Ambra, C. (2023). Generation Z in Chile, Colombia, México, and Panama: Interests and new digital consumption habits. Their use of Instagram and TikTok. Profesional De La Información, 32(2), 1-15. https://doi.org/10.3145/epi.2023.mar.18

Martínez, J. (2023, May 5). Atresmedia Entra en El Canal De Tiktok Ac2uality a Cambio De Un Pacto Comercial. La Información. https://go.revistacomunicar.com/M6CABa

Méndez Rodríguez, E. M. (2003). La descripción de documentos electrónicos a través de metadatos: una visión para la Archivística desde la nueva e-Administración. Revista d’Arxius, 2003, 47- 82. https://go.revistacomunicar.com/dOUT60

Newman, N. (2022). How Publishers Are Learning to Create and Distribute News on TikTok (1914566041). Reuters Institute for the Study of Journalism. https://bit.ly/3OJ2RO0

Noble, S. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press. https://doi.org/10.2307/j.ctt1pwt9w5

Pasquale, F. (2015). The Black Box Society: the Secret lgorithms That Control Money and Information. Harvard University Press. https://doi.org/10.4159/harvard.9780674736061.c8

Pérez-Escolar, M., Alcaide-Pulido, P., & Del Toro, A. (2023). Nuevos referentes informativos de la generación Z: Estudio del rol de los y las inf luencers en TikTok como divulgadores/as de contenidos. Prisma Social: Revista De Investigación Social, (40), 262-288. https://go.revistacomunicar.com/RWmfH4

Reder, M. (2012). Globalización Y Filosofía. Herder. https://doi.org/10.2307/j.ctvt9k0dr

Riemer, K., & Peter, S. (2021). Algorithmic Audiencing: Why We Need to Rethink Free Speech on Social Media. Journal of Information Technology, 36(4), 409-426. https://doi.org/10.1177/02683962211013358

Rifkin, J. (2000). La Era Del Acceso. La Revolución De La Nueva Economía. Paidós. https://go.revistacomunicar.com/7Ahqlz

Thomas, S. L., Nafus, D., & Sherman, J. (2018). Algorithms as Fetish: Faith and Possibility in Algorithmic Work. Big Data & Society, 5(1) , 1-11. h t t p s: //d o i.o r g /10.1177/ 2 0 53951717751552

TikTok. (2022, Nov 17). An update on our platform API for researchers. https://bit.ly/3IGWBlO

Vázquez-Herrero, J., Negreira-Rey, M.-C., & Rodríguez-Vázquez, A.-I. (2021). Intersections Between Tiktok and Tv: Channels and Programmes Thinking Outside the Box. Journalism and Media, 2(1), 1-13. https://doi.org/10.3390/journalmedia2010001

Warner, M. (2012). Público, Públicos, Contrapúblicos. Fondo De Cultura Económica (FCE). https://go.revistacomunicar.com/YdSkEh

Webster, J. G. (2016). Why Study Measures of Exposure? From Exposure to Attention. Communication Methods and Measures, 10(2-3), 179-180. https://doi.org/10.1080/19312458.2016.1150974

Wolton, D. (1999). Sobre La Comunicación. Acento Editorial. https://go.revistacomunicar.com/b94hh5

Published

2024-03-31

How to Cite

Huertas-Bailén, D. A., Quintas-Froufe, D. N., & González-Neira, D. A. (2024). Audience Participation in TikTok Metadata. Comunicar, 32(78). https://doi.org/10.58262/V32I78.7