Application of Machine Learning to Predict and Explain University Academic Performance

Authors

  • Fabricio Vladimir Vinces-Vinces Universidad Politécnica Estatal del Carchi y Universidad Nacional de Loja (Ecuador)
  • Miguel Flores-Sanchéz Universidad Politécnica Nacional (Ecuador)

DOI:

https://doi.org/10.5281/zenodo.16121350

Keywords:

Affective Factors, Artificial Intelligence, Self-control, Academic Performance, University Students, Academic Factors

Abstract

In the educational field, academic performance represents the outcomes of evaluation processes and is related to students’ learning achievements. Early identification of the factors that influence performance allows for timely interventions to prevent course repetition and student dropout. In this regard, the objective of this study was to apply machine learning models to predict and explain academic performance, with a particular focus on students with a history of failing at least one course. A quantitative approach was used, with a non-experimental, ex post facto design, based on a population of 12,211 university students. Data were collected through a 32-item questionnaire covering sociodemographic, socioeconomic, emotional, institutional-academic, self-efficacy, and self-control aspects, linked to the student enrollment system, as well as an institutional database with seven academic variables. Three supervised classification algorithms were trained: Random Forest, XGBoost, and CatBoost. In addition, the SHAP method was used to interpret the model’s outputs. Data processing and analysis were conducted using Python in the Google Colab environment. CatBoost showed the best performance, achieving a 70% recall for the “failed” class. The most influential indicators were faculty, academic program, academic level or cycle, emotional state, teacher support, and previous academic performance. It is concluded that academic failure is influenced primarily by institutional-academic variables, followed by emotional, sociodemographic, and socioeconomic factors. The value of interpretable machine learning (SHAP) is highlighted as a tool to support educational decision-making.

References

Abu Saa, A., Al-Emran, M. y Shaalan, K. (2019). Factors Affecting Students’ Performance in Higher Education: A Systematic Review of Predictive Data Mining Techniques. Technology, Knowledge and Learning, 24(4), 567-598. https://doi.org/10.1007/s10758-019-09408-7

Acosta-Gonzaga, E. y Ramirez-Arellano, A. (2021). The Influence of Motivation, Emotions, Cognition, and Metacognition on Students’ Learning Performance: A Comparative Study in Higher Education in Blended and Traditional Contexts. SAGE Open, 11(2), 21582440211027561. https://doi.org/10.1177/21582440211027561

Al-Tameemi, R. A. N., Johnson, C., Gitay, R., Abdel-Salam, A.-S. G., Hazaa, K. A., BenSaid, A., et al. (2023). Determinants of poor academic performance among undergraduate students—A systematic literature review. International Journal of Educational Research Open, 4, 100232. https://doi.org/10.1016/j.ijedro.2023.100232

Alam, R. y Islam, R. (2022). Determinants of Academic Performance of the Students of Public Universities in Bangladesh. Athens Journal of Education, 9(4), 641-653. https://doi.org/10.30958/aje.9-4-6

Alcaraz Salarirche, N. (2016). Aproximación Histórica a la Evaluación Educativa: De la Generación de la Medición a la Generación Ecléctica. Revista Iberoamericana de Evaluación Educativa, 8(1), 11-25. https://doi.org/10.15366/riee2015.8.1.001

Alegre, A. A. (2014). Autoeficacia académica, autorregulación del aprendizaje y rendimiento académico en estudiantes universitarios iniciales. Propósitos y Representaciones, 2(1), 79-120. https://doi.org/10.20511/pyr2014.v2n1.54

Alipour, N., Sangi, S., Babamiri, M. y Arman, P. (2024). Investigating the relationship between emotional intelligence and self-esteem with educational performance in paramedical students. Medicina Clínica Práctica, 7(1), 100398. https://doi.org/10.1016/j. mcpsp.2023.100398

Arteaga, W. y Sandoval, J. (2018). Factores que intervienen en el rendimiento académico en la Universidad. Acta Nova, 8(4), 552-563. http://www.scielo.org.bo/pdf/ran/v8n4/v8n4_a04.pdf

Bacigalupe, A., Cabezas, A., Bueno, M. B. y Martín, U. (2020). El género como determinante de la salud mental y su medicalización. Informe SESPAS 2020. Gaceta Sanitaria, 34, 61-67. https://doi.org/10.1016/j.gaceta.2020.06.013

Barrera Hernández, L. F., Vales-García, J. J., Sotelo-Castillo, M. A., Ramos Estrada, D. Y. y Ocaña Zúñiga, J. (2020). Variables cognitivas de los estudiantes universitarios: su relación con dedicación al estudio y rendimiento académico. Psicumex, 10(1), 61-74. https://doi.org/10.36793/psicumex.v10i1.342

Bonilla-Marchán, A. M., Valdiviezo-Ortiz, J. A., Orosz, A. y Stefos, E. (2020). Estudiantes de pregrado en Ecuador: Un análisis de datos. magis, Revista Internacional de Investigación en Educación, 12(25), 187-204. https://doi.org/10.11144/Javeriana.m12-25.used

Borja Naranjo, G. M., Martínez Benítez, J. E., Barreno Freire, S. N. y Haro Jácome, O. F. (2021). Factores asociados al rendimiento académico: Un estudio de caso. Revista EDUCARE - UPEL-IPB - Segunda Nueva Etapa 2.0, 25(3), 54-77. https://doi.org/10.46498/reduipb.v25i3.1509

Calva Yaguana, K. P. (2020). Modelo de predicción del rendimiento académico para el curso de nivelación de la Escuela Politécnica Nacional a partir de un modelo de aprendizaje Supervizado automatizado en R [Tesis de Ingeniría Matemática]. http://bibdigital.epn.edu.ec/handle/15000/20718

Cardenas, I., Vásquez, S., Verde, E. y Colque, E. (2020). Rendimiento académico: universo muy complejo para el quehacer pedagógico. Muro de la Investigación, 5(2), 53-65. https://doi.org/10.17162/RMI.V5I2.1325

Colom, R., Escorial, S., Shih, P. C. y Privado, J. (2007). Fluid intelligence, memory span, and temperament difficulties predict academic performance of young adolescents. Personality and Individual Differences, 42(8), 1503-1514. https://doi.org/10.1016/j. paid.2006.10.023

Dodonova, Y. A. y Dodonov, Y. S. (2012). Processing speed and intelligence as predictors of school achievement: Mediation or unique contribution? Intelligence, 40(2), 163-171. https://doi.org/10.1016/j.intell.2012.01.003

Donnelly, J. E. y Lambourne, K. (2011). Classroom-based physical activity, cognition, and academic achievement. Preventive Medicine, 52, S36-S42. https://doi.org/10.1016/j.ypmed.2011.01.021

Dorta-Guerra, R., Marrero, I., Abdul-Jalbar, B., Trujillo-González, R. y Torres, N. V. (2019). A new academic performance indicator for the first term of first-year science degrees students at La Laguna University: a predictive model. FEBS Open Bio, 9(9), 1493-1502. https://doi.org/10.1002/2211-5463.12707

Duckworth, A. L., Taxer, J. L., Eskreis-Winkler, L., Galla, B. M. y Gross, J. J. (2019). Self-Control and Academic Achievement. Annual Review of Psychology, 70, 373-399. https://doi.org/10.1146/annurev-psych-010418-103230

Earl, S. R., Bishop, D., Miller, K., Davison, E. y Pickerell, L. (2024). First-year students’ achievement emotions at university: A cluster analytic approach to understand variability in attendance and attainment. British Journal of Educational Psychology, 94(2), 367-386. https://doi.org/10.1111/bjep.12650

Fischer, A. y LaFrance, M. (2015). What Drives the Smile and the Tear: Why Women Are More Emotionally Expressive Than Men. Emotion Review, 7(1), 22-29. https://doi.org/10.1177/1754073914544406

Garbanzo Vargas, G. M. (2007). Factores asociados al rendimiento académico en estudiantes universitarios, una reflexión desde la calidad de la educación superior pública. Revista Educación, 31(1), 43-63. https://doi.org/10.15517/revedu.v31i1.1252

González-Benito, A., López-Martín, E., Expósito-Casas, E. y Moreno-González, E. (2021). Motivación académica y autoeficacia percibida y su relación con el rendimiento académico en los estudiantes universitarios de la enseñanza a distancia. RELIEVE - Revista Electrónica de Investigación y Evaluación Educativa, 27(2), 2. https://doi.org/10.30827/relieve.v27i2.21909

González, W., Cerón, J., Fernández, E. y Mora, D. (2023). Relación entre el nivel de actividad física y el rendimiento académico en estudiantes de una institución universitaria. Estudio multicéntrico. Retos, 47, 775-782. https://doi.org/10.47197/retos.v47.94795

Grøtan, K., Sund, E. R. y Bjerkeset, O. (2019). Mental Health, Academic Self-Efficacy and Study Progress Among College Students – The SHoT Study, Norway. Frontiers in Psychology, 10, 45. https://doi.org/10.3389/fpsyg.2019.00045

Gutiérrez-Monsalve, J., Garzón, J. y Segura-Cardona, A. (2021). Factores asociados al rendimiento académico en estudiantes universitarios. Formacion Universitaria, 14(1), 13-24. https://doi.org/10.4067/S0718-50062021000100013

Han, J., Cui, N., Lyu, P. y Li, Y. (2023). Early-life home environment and child cognitive function: A meta-analysis. Personality and Individual Differences, 200, 111905. https://doi.org/10.1016/j.paid.2022.111905

Kocsis, Á. y Molnár, G. (2024). Factors influencing academic performance and dropout rates in higher education. Oxford Review of Education, 51(3), 414-432. https://doi.org/10.1080/03054985.2024.2316616

Koppad, S., Gadad, J. y Patil, P. (2023). Understanding the Influence of Student’s Emotions in Academic Success. En 2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON) (pp. 1-6). IEEE. https://doi.org/10.1109/DELCON57910.2023.10127402

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., et al. (2020). From Local Explanations to Global Understanding with Explainable AI for Trees. Nature Machine Intelligence, 2(1), 56-67. https://doi.org/10.1038/s42256-019-0138-9

Martín Pavón, M. J., Sevilla Santo, D. E. y Jenaro Río, C. (2018). Factores personales-institucionales que impactan el rendimiento académico en un posgrado en educación. Revista de Investigación Educativa, 27, 5-31. https://doi.org/10.25009/CPUE.V0I27.2556

Masa’Deh, R., AlAzzam, M., Al-Dweik, G., Masadeh, O., Hamdan-Mansour, A. M. y Basheti, I. A. (2021). Academic performance and socio-demographic characteristics of students: Assessing moderation effect of self-esteem. International Journal of School & Educational Psychology, 9(4), 318-325. https://doi.org/10.1080/21683603.2021.1901811

McLeod, D. B. (1989). Beliefs, Attitudes, and Emotions: New Views of Affect in Mathematics Education. En D. B. McLeod y V. M. Adams (Eds.), Affect and Mathematical Problem Solving: A New Perspective (pp. 245-258). Springer New York. https://doi.org/10.1007/978-1-4612-3614-6_17

McLeod, D. B. (1992). Research on affect in mathematics education: a reconceptualization. En G. Douglas (Ed.), Handbook of research on mathematics teaching and learning. A project of the national council of teachers of mathematics (pp. 575-596). The National Council of Teachers of Mathematics. https://peterliljedahl.com/wp-content/uploads/Affect-McLeod.pdf

Molnár, G. y Kocsis, Á. (2023). Cognitive and non-cognitive predictors of academic success in higher education: a large-scale longitudinal study. Studies in Higher Education, 49(9), 1610-1624. https://doi.org/10.1080/03075079.2023.2271513

Morales Sánchez, L. A., Morales Sánchez, V. y Holguín Quiñones, S. (2016). Rendimiento escolar. Revista electrónica Humanidades, Tecnología y Ciencia del Instituto Politécnico Nacional, 15, 1-5. https://revistaelectronica-ipn.org/ResourcesFiles/Contenido/16/HUMANIDADES_16_000382.pdf

Muñoz-Bullón, F., Sanchez-Bueno, M. J. y Vos-Saz, A. (2017). The influence of sports participation on academic performance among students in higher education. Sport Management Review, 20(4), 365-378. https://doi.org/10.1016/j.smr.2016.10.006

Palacio Sprockel, L. E., Vargas Babilonia, J. D. y Monroy Toro, S. L. (2020). Análisis bibliométrico de estudios sobre factores socioeconómicos en estudiantes universitarios. Educación y Educadores, 23(3), 355-375. https://doi.org/10.5294/edu.2020.23.3.1

Pekrun, R. (2024). Control-Value Theory: From Achievement Emotion to a General Theory of Human Emotions. Educational Psychology Review, 36(3), 83. https://doi.org/10.1007/s10648-024-09909-7

Poveda Garcés, D. A., Flores Murillo, C. R., Pazmiño Robles, L. G. y Yaguar Gutiérrez, S. P. (2023). Factores que influyen en el desempeño académico universitario. Reciamuc, 7(1), 381-389. https://doi.org/10.26820/reciamuc/7.(1).enero.2023.381-389

Putwain, D., Sander, P. y Larkin, D. (2013). Academic self-efficacy in study-related skills and behaviours: Relations with learning- related emotions and academic success. British Journal of Educational Psychology, 83(4), 633-650. https://doi.org/10.1111/j.2044-8279.2012.02084.x

Quílez-Robres, A., Usán, P., Lozano-Blasco, R. y Salavera, C. (2023). Emotional intelligence and academic performance: A systematic review and meta-analysis. Thinking Skills and Creativity, 49, 101355. https://doi.org/10.1016/j.tsc.2023.101355

Ren, X., Tong, Y., Peng, P. y Wang, T. (2020). Critical thinking predicts academic performance beyond general cognitive ability: Evidence from adults and children. Intelligence, 82, 101487. https://doi.org/10.1016/j.intell.2020.101487

Rodríguez-Hernández, C. F., Kyndt, E. y Cascallar, E. (2023). A Cluster Analysis of Academic Performance in Higher Education through Self-Organizing Maps. En M. Cebral-Loureda, E. G. Rincón-Flores, y G. Sanchez-Ante (Eds.), What AI Can Do: Strengths and Limitations of Artificial Intelligence (pp. 115-134). CRC Press. https://doi.org/10.1201/b23345-9

Rodríguez-Hernández, C. F., Musso, M., Kyndt, E. y Cascallar, E. (2021). Artificial neural networks in academic performance prediction: Systematic implementation and predictor evaluation. Computers and Education: Artificial Intelligence, 2, 100018. https://doi.org/10.1016/j.caeai.2021.100018

Romanova, E., Kolokoltsev, M., Vorozheikin, A., Konovalov, D., Vrachinskaya, T., Fedorov, V., et al. (2023). The dependence of the academic performance of university students on the level of their physical activity. Journal of Physical Education and Sport, 23(2), 404-409. https://doi.org/10.7752/jpes.2023.02049

Sanchez Leon, A. F. (2023). Self-concept and academic performance of university students. Universidad Ciencia y Tecnología, 27(118), 61-68. https://doi.org/10.47460/uct.v27i118.687

Sánchez, P., Ordonez-Morales, O., Barbosa, F. y Payán-Villamizar, C. M. (2021). Estrategias para el acompañamiento y seguimiento estudiantil: La experiencia de ases en la Universidad del Valle. Universidad del Valle. https://www.researchgate.net/publication/358008138

Shi, Y. y Qu, S. (2022a). Analysis of the effect of cognitive ability on academic achievement: Moderating role of self-monitoring. Frontiers in Psychology, 13, 996504. https://doi.org/10.3389/fpsyg.2022.996504

Shi, Y. y Qu, S. (2022b). The effect of cognitive ability on academic achievement: The mediating role of self-discipline and the moderating role of planning. Frontiers in Psychology, 13, 1014655. https://doi.org/10.3389/fpsyg.2022.1014655

Sofyana, M., Wibowo, R. A. y Agustiningsih, D. (2022). Wake-up time and academic performance of university students in Indonesia: A cross-sectional study. Frontiers in Education, 7, 982320. https://doi.org/10.3389/feduc.2022.982320

Stajkovic, A. D., Bandura, A., Locke, E. A., Lee, D. y Sergent, K. (2018). Test of three conceptual models of influence of the big five personality traits and self-efficacy on academic performance: A meta-analytic path-analysis. Personality and Individual Differences, 120, 238-245. https://doi.org/10.1016/j.paid.2017.08.014

Steinmayr, R., Weidinger, A. F., Schwinger, M. y Spinath, B. (2019). The Importance of Students’ Motivation for Their Academic Achievement – Replicating and Extending Previous Findings. Frontiers in Psychology, 10, 464340. https://doi.org/10.3389/f psyg.2019.01730

Tan, G. X. D., Soh, X. C., Hartanto, A., Goh, A. Y. H. y Majeed, N. M. (2023). Prevalence of anxiety in college and university students: An umbrella review. Journal of Affective Disorders Reports, 14, 100658. https://doi.org/10.1016/j.jadr.2023.100658

Tumino, M. C., Quinde, J. M., Lilian Noemí, C. y Melissa Raquel, V. (2020). Self-efficacy in university students: the role of academic empowerment. IJERI: International Journal of Educational Research and Innovation, (14), 211-224. https://doi.org/10.46661/ijeri.4618

Viloria Hernández, E., Marquez Ortega, M. A. y Santillan Briceño, V. E. (2020). Anxiety and Academic Performance in University Students. American International Journal of Contemporary Research, 10(2), 8-12. https://doi.org/10.30845/aijcr.v10n2p2

Vitasari, P., Wahab, M. N. A., Othman, A., Herawan, T. y Sinnadurai, S. K. (2010). The Relationship between Study Anxiety and Academic Performance among Engineering Students. Procedia - Social and Behavioral Sciences, 8, 490-497. https://doi.org/10.1016/j.sbspro.2010.12.067

Wang, S. y Luo, B. (2024). Academic achievement prediction in higher education through interpretable modeling. PloS One, 19(9), e0309838. https://doi.org/10.1371/journal.pone.0309838

Xiang, J., Wan, Y. y Zhou, J. (2019). Factors Affecting the Learning Effect of Advanced Mathematics among Chinese College Students in Social Science Majors. Eurasia Journal of Mathematics, Science and Technology Education, 15(11), em1770. https://doi.org/10.29333/ejmste/109607

Zhang, J., Peng, C. y Chen, C. (2024). Mental health and academic performance of college students: Knowledge in the field of mental health, self-control, and learning in college. Acta Psychologica, 248, 104351. https://doi.org/10.1016/j.actpsy.2024.104351

Zimmerman, B. J. (2000). Self-Efficacy: An Essential Motive to Learn. Contemporary Educational Psychology, 25(1), 82-91. https://doi.org/10.1006/ceps.1999.1016

Zumárraga-Espinosa, M. y Cevallos-Pozo, G. (2022). Autoeficacia, procrastinación y rendimiento académico en estudiantes universitarios de Ecuador. Alteridad, 17(2), 277-290. https://doi.org/10.17163/ALT.V17N2.2022.08

Published

2025-07-28

How to Cite

Fabricio Vladimir Vinces-Vinces, & Miguel Flores-Sanchéz. (2025). Application of Machine Learning to Predict and Explain University Academic Performance. Comunicar, 33(82), 12–23. https://doi.org/10.5281/zenodo.16121350

Issue

Section

Research Article