Fabricio Vladimir Vinces-Vinces Universidad Politécnica Estatal del Carchi y Universidad Nacional de Loja (Ecuador)
Miguel Flores-Sanchéz Universidad Politécnica Nacional (Ecuador)
Keywords
Factores afectivos, inteligenica artificial, autocontrol, rendimiento académico, estudiantes universitarios, factores académicos
Abstract
En el ámbito educativo, el rendimiento académico representa los resultados de procesos de evaluación y se relaciona con logros de aprendizaje. La identificación temprana de los factores que influyen en el rendimiento permite orientar intervenciones oportunas para prevenir la repitencia y el abandono estudiantil. Ante esto, la investigación tuvo como propósito aplicar modelos de Machine Learning para predecir y explicar el rendimiento académico, enfocándose particularmente en estudiantes con antecedentes de reprobación. Se utilizó un enfoque cuantitativo, con diseño no experimental y análisis ex post facto, basado en una población de 12211 estudiantes universitarios. La información se recopiló mediante un cuestionario de 32 ítems sobre aspectos sociodemográficos, socioeconómicos, emocionales, institucionales-académicos, autoeficacia y autocontrol, anclado a la opción matrícula del estudiante, y una base institucional con siete variables académicas. Se entrenaron tres algoritmos de clasificación supervisada: Random Forest, XGBoost y CatBoost. Además, se utilizó el método SHAP para interpretar los resultados del modelo. El procesamiento y análisis se realizó en Python utilizando Google Colab. CatBoost mostró el mejor desempeño, alcanzando un recall del 70 % para la clase “reprobada”. Los indicadores más influyentes fueron: facultad, carrera, nivel o ciclo, estado emocional, atención docente y desempeño académico previo. Se concluye que la reprobación está influenciada, por variables académicas-institucionales, seguidas de emocionales, sociodemográficas y socioeconómicas; y, se destaca el valor del Machine Learning interpretativo (SHAP) para apoyar la toma de decisiones educativas.
References
Abu Saa, A., Al-Emran, M. y Shaalan, K. (2019). Factors Affecting Students’ Performance in Higher Education: A Systematic Review of Predictive Data Mining Techniques. Technology, Knowledge and Learning, 24(4), 567-598. https://doi.org/10.1007/s10758-019-09408-7
Acosta-Gonzaga, E. y Ramirez-Arellano, A. (2021). The Influence of Motivation, Emotions, Cognition, and Metacognition on Students’ Learning Performance: A Comparative Study in Higher Education in Blended and Traditional Contexts. SAGE Open, 11(2), 21582440211027561. https://doi.org/10.1177/21582440211027561
Al-Tameemi, R. A. N., Johnson, C., Gitay, R., Abdel-Salam, A.-S. G., Hazaa, K. A., BenSaid, A., et al. (2023). Determinants of poor academic performance among undergraduate students—A systematic literature review. International Journal of Educational Research Open, 4, 100232. https://doi.org/10.1016/j.ijedro.2023.100232
Alam, R. y Islam, R. (2022). Determinants of Academic Performance of the Students of Public Universities in Bangladesh. Athens Journal of Education, 9(4), 641-653. https://doi.org/10.30958/aje.9-4-6
Alcaraz Salarirche, N. (2016). Aproximación Histórica a la Evaluación Educativa: De la Generación de la Medición a la Generación Ecléctica. Revista Iberoamericana de Evaluación Educativa, 8(1), 11-25. https://doi.org/10.15366/riee2015.8.1.001
Alegre, A. A. (2014). Autoeficacia académica, autorregulación del aprendizaje y rendimiento académico en estudiantes universitarios iniciales. Propósitos y Representaciones, 2(1), 79-120. https://doi.org/10.20511/pyr2014.v2n1.54
Alipour, N., Sangi, S., Babamiri, M. y Arman, P. (2024). Investigating the relationship between emotional intelligence and self-esteem with educational performance in paramedical students. Medicina Clínica Práctica, 7(1), 100398. https://doi.org/10.1016/j. mcpsp.2023.100398
Arteaga, W. y Sandoval, J. (2018). Factores que intervienen en el rendimiento académico en la Universidad. Acta Nova, 8(4), 552-563. http://www.scielo.org.bo/pdf/ran/v8n4/v8n4_a04.pdf
Bacigalupe, A., Cabezas, A., Bueno, M. B. y Martín, U. (2020). El género como determinante de la salud mental y su medicalización. Informe SESPAS 2020. Gaceta Sanitaria, 34, 61-67. https://doi.org/10.1016/j.gaceta.2020.06.013
Barrera Hernández, L. F., Vales-García, J. J., Sotelo-Castillo, M. A., Ramos Estrada, D. Y. y Ocaña Zúñiga, J. (2020). Variables cognitivas de los estudiantes universitarios: su relación con dedicación al estudio y rendimiento académico. Psicumex, 10(1), 61-74. https://doi.org/10.36793/psicumex.v10i1.342
Bonilla-Marchán, A. M., Valdiviezo-Ortiz, J. A., Orosz, A. y Stefos, E. (2020). Estudiantes de pregrado en Ecuador: Un análisis de datos. magis, Revista Internacional de Investigación en Educación, 12(25), 187-204. https://doi.org/10.11144/Javeriana.m12-25.used
Borja Naranjo, G. M., Martínez Benítez, J. E., Barreno Freire, S. N. y Haro Jácome, O. F. (2021). Factores asociados al rendimiento académico: Un estudio de caso. Revista EDUCARE - UPEL-IPB - Segunda Nueva Etapa 2.0, 25(3), 54-77. https://doi.org/10.46498/reduipb.v25i3.1509
Calva Yaguana, K. P. (2020). Modelo de predicción del rendimiento académico para el curso de nivelación de la Escuela Politécnica Nacional a partir de un modelo de aprendizaje Supervizado automatizado en R [Tesis de Ingeniría Matemática]. http://bibdigital.epn.edu.ec/handle/15000/20718
Cardenas, I., Vásquez, S., Verde, E. y Colque, E. (2020). Rendimiento académico: universo muy complejo para el quehacer pedagógico. Muro de la Investigación, 5(2), 53-65. https://doi.org/10.17162/RMI.V5I2.1325
Colom, R., Escorial, S., Shih, P. C. y Privado, J. (2007). Fluid intelligence, memory span, and temperament difficulties predict academic performance of young adolescents. Personality and Individual Differences, 42(8), 1503-1514. https://doi.org/10.1016/j. paid.2006.10.023
Dodonova, Y. A. y Dodonov, Y. S. (2012). Processing speed and intelligence as predictors of school achievement: Mediation or unique contribution? Intelligence, 40(2), 163-171. https://doi.org/10.1016/j.intell.2012.01.003
Donnelly, J. E. y Lambourne, K. (2011). Classroom-based physical activity, cognition, and academic achievement. Preventive Medicine, 52, S36-S42. https://doi.org/10.1016/j.ypmed.2011.01.021
Dorta-Guerra, R., Marrero, I., Abdul-Jalbar, B., Trujillo-González, R. y Torres, N. V. (2019). A new academic performance indicator for the first term of first-year science degrees students at La Laguna University: a predictive model. FEBS Open Bio, 9(9), 1493-1502. https://doi.org/10.1002/2211-5463.12707
Duckworth, A. L., Taxer, J. L., Eskreis-Winkler, L., Galla, B. M. y Gross, J. J. (2019). Self-Control and Academic Achievement. Annual Review of Psychology, 70, 373-399. https://doi.org/10.1146/annurev-psych-010418-103230
Earl, S. R., Bishop, D., Miller, K., Davison, E. y Pickerell, L. (2024). First-year students’ achievement emotions at university: A cluster analytic approach to understand variability in attendance and attainment. British Journal of Educational Psychology, 94(2), 367-386. https://doi.org/10.1111/bjep.12650
Fischer, A. y LaFrance, M. (2015). What Drives the Smile and the Tear: Why Women Are More Emotionally Expressive Than Men. Emotion Review, 7(1), 22-29. https://doi.org/10.1177/1754073914544406
Garbanzo Vargas, G. M. (2007). Factores asociados al rendimiento académico en estudiantes universitarios, una reflexión desde la calidad de la educación superior pública. Revista Educación, 31(1), 43-63. https://doi.org/10.15517/revedu.v31i1.1252
González-Benito, A., López-Martín, E., Expósito-Casas, E. y Moreno-González, E. (2021). Motivación académica y autoeficacia percibida y su relación con el rendimiento académico en los estudiantes universitarios de la enseñanza a distancia. RELIEVE - Revista Electrónica de Investigación y Evaluación Educativa, 27(2), 2. https://doi.org/10.30827/relieve.v27i2.21909
González, W., Cerón, J., Fernández, E. y Mora, D. (2023). Relación entre el nivel de actividad física y el rendimiento académico en estudiantes de una institución universitaria. Estudio multicéntrico. Retos, 47, 775-782. https://doi.org/10.47197/retos.v47.94795
Grøtan, K., Sund, E. R. y Bjerkeset, O. (2019). Mental Health, Academic Self-Efficacy and Study Progress Among College Students – The SHoT Study, Norway. Frontiers in Psychology, 10, 45. https://doi.org/10.3389/fpsyg.2019.00045
Gutiérrez-Monsalve, J., Garzón, J. y Segura-Cardona, A. (2021). Factores asociados al rendimiento académico en estudiantes universitarios. Formacion Universitaria, 14(1), 13-24. https://doi.org/10.4067/S0718-50062021000100013
Han, J., Cui, N., Lyu, P. y Li, Y. (2023). Early-life home environment and child cognitive function: A meta-analysis. Personality and Individual Differences, 200, 111905. https://doi.org/10.1016/j.paid.2022.111905
Kocsis, Á. y Molnár, G. (2024). Factors influencing academic performance and dropout rates in higher education. Oxford Review of Education, 51(3), 414-432. https://doi.org/10.1080/03054985.2024.2316616
Koppad, S., Gadad, J. y Patil, P. (2023). Understanding the Influence of Student’s Emotions in Academic Success. En 2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON) (pp. 1-6). IEEE. https://doi.org/10.1109/DELCON57910.2023.10127402
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., et al. (2020). From Local Explanations to Global Understanding with Explainable AI for Trees. Nature Machine Intelligence, 2(1), 56-67. https://doi.org/10.1038/s42256-019-0138-9
Martín Pavón, M. J., Sevilla Santo, D. E. y Jenaro Río, C. (2018). Factores personales-institucionales que impactan el rendimiento académico en un posgrado en educación. Revista de Investigación Educativa, 27, 5-31. https://doi.org/10.25009/CPUE.V0I27.2556
Masa’Deh, R., AlAzzam, M., Al-Dweik, G., Masadeh, O., Hamdan-Mansour, A. M. y Basheti, I. A. (2021). Academic performance and socio-demographic characteristics of students: Assessing moderation effect of self-esteem. International Journal of School & Educational Psychology, 9(4), 318-325. https://doi.org/10.1080/21683603.2021.1901811
McLeod, D. B. (1989). Beliefs, Attitudes, and Emotions: New Views of Affect in Mathematics Education. En D. B. McLeod y V. M. Adams (Eds.), Affect and Mathematical Problem Solving: A New Perspective (pp. 245-258). Springer New York. https://doi.org/10.1007/978-1-4612-3614-6_17
McLeod, D. B. (1992). Research on affect in mathematics education: a reconceptualization. En G. Douglas (Ed.), Handbook of research on mathematics teaching and learning. A project of the national council of teachers of mathematics (pp. 575-596). The National Council of Teachers of Mathematics. https://peterliljedahl.com/wp-content/uploads/Affect-McLeod.pdf
Molnár, G. y Kocsis, Á. (2023). Cognitive and non-cognitive predictors of academic success in higher education: a large-scale longitudinal study. Studies in Higher Education, 49(9), 1610-1624. https://doi.org/10.1080/03075079.2023.2271513
Morales Sánchez, L. A., Morales Sánchez, V. y Holguín Quiñones, S. (2016). Rendimiento escolar. Revista electrónica Humanidades, Tecnología y Ciencia del Instituto Politécnico Nacional, 15, 1-5. https://revistaelectronica-ipn.org/ResourcesFiles/Contenido/16/HUMANIDADES_16_000382.pdf
Muñoz-Bullón, F., Sanchez-Bueno, M. J. y Vos-Saz, A. (2017). The influence of sports participation on academic performance among students in higher education. Sport Management Review, 20(4), 365-378. https://doi.org/10.1016/j.smr.2016.10.006
Palacio Sprockel, L. E., Vargas Babilonia, J. D. y Monroy Toro, S. L. (2020). Análisis bibliométrico de estudios sobre factores socioeconómicos en estudiantes universitarios. Educación y Educadores, 23(3), 355-375. https://doi.org/10.5294/edu.2020.23.3.1
Pekrun, R. (2024). Control-Value Theory: From Achievement Emotion to a General Theory of Human Emotions. Educational Psychology Review, 36(3), 83. https://doi.org/10.1007/s10648-024-09909-7
Poveda Garcés, D. A., Flores Murillo, C. R., Pazmiño Robles, L. G. y Yaguar Gutiérrez, S. P. (2023). Factores que influyen en el desempeño académico universitario. Reciamuc, 7(1), 381-389. https://doi.org/10.26820/reciamuc/7.(1).enero.2023.381-389
Putwain, D., Sander, P. y Larkin, D. (2013). Academic self-efficacy in study-related skills and behaviours: Relations with learning- related emotions and academic success. British Journal of Educational Psychology, 83(4), 633-650. https://doi.org/10.1111/j.2044-8279.2012.02084.x
Quílez-Robres, A., Usán, P., Lozano-Blasco, R. y Salavera, C. (2023). Emotional intelligence and academic performance: A systematic review and meta-analysis. Thinking Skills and Creativity, 49, 101355. https://doi.org/10.1016/j.tsc.2023.101355
Ren, X., Tong, Y., Peng, P. y Wang, T. (2020). Critical thinking predicts academic performance beyond general cognitive ability: Evidence from adults and children. Intelligence, 82, 101487. https://doi.org/10.1016/j.intell.2020.101487
Rodríguez-Hernández, C. F., Kyndt, E. y Cascallar, E. (2023). A Cluster Analysis of Academic Performance in Higher Education through Self-Organizing Maps. En M. Cebral-Loureda, E. G. Rincón-Flores, y G. Sanchez-Ante (Eds.), What AI Can Do: Strengths and Limitations of Artificial Intelligence (pp. 115-134). CRC Press. https://doi.org/10.1201/b23345-9
Rodríguez-Hernández, C. F., Musso, M., Kyndt, E. y Cascallar, E. (2021). Artificial neural networks in academic performance prediction: Systematic implementation and predictor evaluation. Computers and Education: Artificial Intelligence, 2, 100018. https://doi.org/10.1016/j.caeai.2021.100018
Romanova, E., Kolokoltsev, M., Vorozheikin, A., Konovalov, D., Vrachinskaya, T., Fedorov, V., et al. (2023). The dependence of the academic performance of university students on the level of their physical activity. Journal of Physical Education and Sport, 23(2), 404-409. https://doi.org/10.7752/jpes.2023.02049
Sanchez Leon, A. F. (2023). Self-concept and academic performance of university students. Universidad Ciencia y Tecnología, 27(118), 61-68. https://doi.org/10.47460/uct.v27i118.687
Sánchez, P., Ordonez-Morales, O., Barbosa, F. y Payán-Villamizar, C. M. (2021). Estrategias para el acompañamiento y seguimiento estudiantil: La experiencia de ases en la Universidad del Valle. Universidad del Valle. https://www.researchgate.net/publication/358008138
Shi, Y. y Qu, S. (2022a). Analysis of the effect of cognitive ability on academic achievement: Moderating role of self-monitoring. Frontiers in Psychology, 13, 996504. https://doi.org/10.3389/fpsyg.2022.996504
Shi, Y. y Qu, S. (2022b). The effect of cognitive ability on academic achievement: The mediating role of self-discipline and the moderating role of planning. Frontiers in Psychology, 13, 1014655. https://doi.org/10.3389/fpsyg.2022.1014655
Sofyana, M., Wibowo, R. A. y Agustiningsih, D. (2022). Wake-up time and academic performance of university students in Indonesia: A cross-sectional study. Frontiers in Education, 7, 982320. https://doi.org/10.3389/feduc.2022.982320
Stajkovic, A. D., Bandura, A., Locke, E. A., Lee, D. y Sergent, K. (2018). Test of three conceptual models of influence of the big five personality traits and self-efficacy on academic performance: A meta-analytic path-analysis. Personality and Individual Differences, 120, 238-245. https://doi.org/10.1016/j.paid.2017.08.014
Steinmayr, R., Weidinger, A. F., Schwinger, M. y Spinath, B. (2019). The Importance of Students’ Motivation for Their Academic Achievement – Replicating and Extending Previous Findings. Frontiers in Psychology, 10, 464340. https://doi.org/10.3389/f psyg.2019.01730
Tan, G. X. D., Soh, X. C., Hartanto, A., Goh, A. Y. H. y Majeed, N. M. (2023). Prevalence of anxiety in college and university students: An umbrella review. Journal of Affective Disorders Reports, 14, 100658. https://doi.org/10.1016/j.jadr.2023.100658
Tumino, M. C., Quinde, J. M., Lilian Noemí, C. y Melissa Raquel, V. (2020). Self-efficacy in university students: the role of academic empowerment. IJERI: International Journal of Educational Research and Innovation, (14), 211-224. https://doi.org/10.46661/ijeri.4618
Viloria Hernández, E., Marquez Ortega, M. A. y Santillan Briceño, V. E. (2020). Anxiety and Academic Performance in University Students. American International Journal of Contemporary Research, 10(2), 8-12. https://doi.org/10.30845/aijcr.v10n2p2
Vitasari, P., Wahab, M. N. A., Othman, A., Herawan, T. y Sinnadurai, S. K. (2010). The Relationship between Study Anxiety and Academic Performance among Engineering Students. Procedia - Social and Behavioral Sciences, 8, 490-497. https://doi.org/10.1016/j.sbspro.2010.12.067
Wang, S. y Luo, B. (2024). Academic achievement prediction in higher education through interpretable modeling. PloS One, 19(9), e0309838. https://doi.org/10.1371/journal.pone.0309838
Xiang, J., Wan, Y. y Zhou, J. (2019). Factors Affecting the Learning Effect of Advanced Mathematics among Chinese College Students in Social Science Majors. Eurasia Journal of Mathematics, Science and Technology Education, 15(11), em1770. https://doi.org/10.29333/ejmste/109607
Zhang, J., Peng, C. y Chen, C. (2024). Mental health and academic performance of college students: Knowledge in the field of mental health, self-control, and learning in college. Acta Psychologica, 248, 104351. https://doi.org/10.1016/j.actpsy.2024.104351
Zimmerman, B. J. (2000). Self-Efficacy: An Essential Motive to Learn. Contemporary Educational Psychology, 25(1), 82-91. https://doi.org/10.1006/ceps.1999.1016
Zumárraga-Espinosa, M. y Cevallos-Pozo, G. (2022). Autoeficacia, procrastinación y rendimiento académico en estudiantes universitarios de Ecuador. Alteridad, 17(2), 277-290. https://doi.org/10.17163/ALT.V17N2.2022.08
Technical information
Received: 2025-01-06 | Reviewed: 2025-03-28 | Accepted: 2025-03-29 | Online First: 2025-07-21 | Published: 2025-07-24
Metrics
Metrics of this article
Views: 38099
Abstract readings: 36810
PDF downloads: 1289
Full metrics of Comunicar 77
Views: 459033
Abstract readings: 446071
PDF downloads: 12962
Cited by
Cites in Web of Science
Currently there are no citations to this document

Cites in Scopus
Currently there are no citations to this document

Cites in Google Scholar
Currently there are no citations to this document
Métricas alternativas
Cómo citar
Fabricio Vladimir Vinces-Vinces., Miguel Flores-Sanchéz. (2025). Aplicación de Machine Learning para predecir y explicar el rendimiento académico universitario. Comunicar, 33(82). 10.5281/zenodo.16121350