Keywords

Artificial intelligence, education, contemporary, e-learning, online teaching, deep learning

Abstract

The term 'Artificial Intelligence' was coined in 1956 at a conference at Dartmouth College and since then it has undergone constant development and has evolved radically. Prominent pioneers of the term include John McCarthy, Marvin Minsky, Allen Newell, and Herbert A. Simon. The application of AI in education worldwide has increased dramatically with its importance growing at an increasing rate. The objective of this research is to bibliometrically analyze applications of AI in contemporary education. The methodology includes a Prisma of the articles of three fundamental databases: Scopus (n=390), Mendeley (n=113), and Science Direct (n=3,594). A total of n=4,097 articles in English and Spanish were analyzed. The systematic literature review of recent works employed a mixed approach using quantitative and qualitative methods. It was inferred by the authors that AI is revolutionizing education by offering personalized and efficient solutions to improve students’ learning. One of the main conclusions of this research is that in contemporary education, students are one of the groups that are most affected by AI. Furthermore, the human intelligence of teachers plays a fundamental role since they adapt their methodologies to leverage new technologies. Finally, it is worth noting that decisions made in schools and universities support new educational models based on technology.

View infography

References

Ahmed, A., Aziz, S., Qidwai, U., Farooq, F., Shan, J., Subramanian, M., Chouchane, L., EINatour, R., Abd-Alrazaq, A., Pandas, S., & Sheikh, J. (2022). Wearable artificial intelligence for assessing physical activity in high school children. Sustainability, 15(1), 638. https://doi.org/10.3390/su15010638

Link DOI | Link Google Scholar

Alhumaid, K., Naqbi, S.A., Elsori, D., & Mansoori, M.A. (2023). The adoption of artificial intelligence applications in education. International Journal of Data and Network Science, 7(1), 457-466. https://doi.org/10.5267/j.ijdns.2022.8.013

Link DOI | Link Google Scholar

Allaoua-Chelloug, S., Ashfaq, H., Alsuhibany, S., Shorfuzzaman, M., Alsufyani, A., Jalal, A., & Park, J. (2023). Real objects understanding using 3D haptic virtual reality for e-learning education. Computers, Materials & Continua, 74(1), 1607-1624. https://doi.org/10.32604/cmc.2023.032245

Link DOI | Link Google Scholar

Aloisi, C. (2023). The future of standardised assessment: Validity and trust in algorithms for assessment and scoring. European Journal of Education, 58(1), 98-110. https://doi.org/10.1111/ejed.12542

Link DOI | Link Google Scholar

Arbelaez-Ossa, L., Rost, M., Lorenzini, G., Shaw, D.M., & Elger, B.S. (2023). A smarter perspective: Learning with and from AI-cases. Artificial Intelligence in Medicine, 135, 102458. https://doi.org/10.1016/j.artmed.2022.102458

Link DOI | Link Google Scholar

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Link DOI | Link Google Scholar

Bañeres, D., Rodríguez-González, M.E., Guerrero-Roldán, A.E., & Cortadas, P. (2023). An early warning system to identify and intervene online dropout learners. International Journal of Educational Technology in Higher Education, 20(1), 1-25. https://doi.org/10.1186/s41239-022-00371-5

Link DOI | Link Google Scholar

Cerqueira, J.M., Cleto, B., Moura, J.M., Sylla, C., & Ferreira, L. (2023). Potentiating learning through augmented reality and serious games. In A.Y.C. Nee & S.K. Ong (eds), Springer Handbook of Augmented Reality (pp. 369-390). Springer. https://doi.org/10.1007/978-3-030-67822-7_15

Link DOI | Link Google Scholar

Chai, C.S., Chiu, T.K.F., Wang, X., Jiang, F., & Lin, X.F. (2023). Modeling Chinese Secondary School students’ behavioral intentions to learn artificial intelligence with the theory of planned behavior and self-determination theory. Sustainability, 15(1), 605. https://doi.org/10.3390/su15010605

Link DOI | Link Google Scholar

Dabbous, A., & Boustani, N.M. (2023). Digital explosion and entrepreneurship education: Impact on promoting entrepreneurial intention for business students. Journal of Risk and Financial Management, 16(1), 27-48. https://doi.org/10.3390/jrfm16010027

Link DOI | Link Google Scholar

Dong, Y. (2022). Application of artificial intelligence software based on semantic web technology in english learning and teaching. Journal of Internet Technology, 23(1), 143-152. https://doi.org/10.53106/160792642022012301015

Link DOI | Link Google Scholar

Ednie, G., Kapoor, T., Koppel, O., Piczak, M.L., Reid, J.L., Murdoch, A.D., Cook, C.N., Sutherland, W.J., & Cooke, S.J. (2022). Foresight science in conservation: Tools, barriers, and mainstreaming opportunities. Ambio, 52(2), 411-424. https://doi.org/10.1007/s13280-022-01786-0

Link DOI | Link Google Scholar

Flores-Vivar, J., & García-Peñalvo, F. (2023). Reflexiones sobre la ética, potencialidades y desafíos de la inteligencia artificial en el marco de una educación de calidad (ODS4). [Reflexiones sobre la ética, potencialidades y desafíos de la IA en el marco de la Educación de Calidad (ODS4)]. Comunicar, 74, 37-47. https://doi.org/10.3916/C74-2023-03

Link DOI | Link Google Scholar

García-Orosa, B., Canavilhas, J., & Vázquez-Herrero, J. (2023). Algorithms and communication: A systematized literature review. [Algoritmos y comunicación: Revisión sistematizada de la literatura]. Comunicar, 74, 9-21. https://doi.org/10.3916/C74-2023-01

Link DOI | Link Google Scholar

Hinojo-Lucena, F., Aznar-Díaz, I., Cáceres-Reche, M., & Romero-Rodríguez, J. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1), 51-60. https://doi.org/10.3390/educsci9010051

Link DOI | Link Google Scholar

Ho, M., Le, N., Mantello, P., Ho, M., & Ghotbi, N. (2023). Understanding the acceptance of emotional artificial intelligence in japanese healthcare system: A cross-sectional survey of clinic visitors’ attitude. Technology in Society, 72, 102-166. https://doi.org/10.1016/j.techsoc.2022.102166

Link DOI | Link Google Scholar

Hort, M., Moussa, R., & Sarro, F. (2023). Multi-objective search for gender-fair and semantically correct word embeddings. Applied Soft Computing, 133, 109916. https://doi.org/10.1016/j.asoc.2022.109916

Link DOI | Link Google Scholar

Hu, Y., Fu, J.S., & Yeh, H. (2023). Developing an early-warning system through robotic process automation: Are intelligent tutoring robots as effective as human teachers? Interactive Learning Environments, 1-14. https://doi.org/10.1080/10494820.2022.2160467

Link DOI | Link Google Scholar

Hua-Hu, K. (2023). An exploration of the key determinants for the application of AI-enabled higher education based on a hybrid soft-computing technique and a DEMATEL approach. Expert Systems with Applications, 212, 118-762. https://doi.org/10.1016/j.eswa.2022.118762

Link DOI | Link Google Scholar

Huang, A.Y.Q., Lu, O.H.T., & Yang, S.J.H. (2023). Effects of artificial Intelligence–enabled personalized recommendations on learners’ learning engagement, motivation, and outcomes in a flipped classroom. Computers and Education, 194, 104684. https://doi.org/10.1016/j.compedu.2022.104684

Link DOI | Link Google Scholar

Hussain, A. (2023). Use of artificial intelligence in the library services: prospects and challenges. Library Hi Tech News, 40(2), 15-17. https://doi.org/10.1108/LHTN-11-2022-0125

Link DOI | Link Google Scholar

Kaur, D., Uslu, S., Rittichier, K.J., & Durresi, A. (2022). Trustworthy artificial intelligence: A review. ACM Computing Surveys, 55(2), 1-38. https://doi.org/10.1145/3491209

Link DOI | Link Google Scholar

King, M.R., & chatGPT. (2023). A conversation on artificial intelligence, chatbots, and plagiarism in higher education. Cellular and Molecular Bioengineering, 16(1), 1-2. https://doi.org/10.1007/s12195-022-00754-8

Link DOI | Link Google Scholar

Lahza, H., Khosravi, H., & Demartini, G. (2023). Analytics of learning tactics and strategies in an online learnersourcing environment. Journal of Computer Assisted Learning, 39(1), 94-112. https://doi.org/10.1111/jcal.12729

Link DOI | Link Google Scholar

Li, C., Zheng, P., Yin, Y., Wang, B., & Wang, L. (2023). Deep reinforcement learning in smart manufacturing: A review and prospects. CIRP Journal of Manufacturing Science and Technology, 40, 75-101. https://doi.org/10.1016/j.cirpj.2022.11.003

Link DOI | Link Google Scholar

Matthew, J., Pagea, J.E., McKenziea, P.M., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuiness, L.A., … Moher, D. (2021). Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016

Link DOI | Link Google Scholar

Ouyang, F., Wu, M., Zheng, L., Zhang, L., & Jiao, P. (2023). Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course. International Journal of Educational Technology in Higher Education, 20(1), 4. https://doi.org/10.1186/s41239-022-00372-4

Link DOI | Link Google Scholar

Picciano, A.G. (2019). Artificial intelligence and the academy’s loss of purpose. Online Learning Journal, 23(3), 270-284. https://doi.org/10.24059/olj.v23i3.2023

Link DOI | Link Google Scholar

Sayed, B.T., Madanan, M., & Biju, N. (2023). An efficient artificial intelligence-based educational data mining approach for higher education and early recognition system. SN Computer Science, 4(2), 130. https://doi.org/10.1007/s42979-022-01562-7

Link DOI | Link Google Scholar

Shen, C., & Tan, Y. (2023). Effect evaluation model of computer aided physical education teaching and training based on artificial intelligence. Computer-Aided Design and Applications, 20(S5), 106-115. https://doi.org/10.14733/cadaps.2023.S5.106-115

Link DOI | Link Google Scholar

Sun, F., & Ye, R. (2023). Moral considerations of artificial intelligence. Science and Education, 32(1), 1-17. https://doi.org/10.1007/s11191-021-00282-3

Link DOI | Link Google Scholar

Tongkachok, K., Ali, B.M., Ganguly, M., Kumar, S., Malathi, M., & Subramanian, M. (2023). A detailed exploration of artificial intelligence and digital education and its sustainable impact on the youth of society. In S. Yadav., A. Haleem, P.K. Arora., & H. Kumar, H. (eds), Proceedings of Second International Conference in Mechanical and Energy Technology (pp. 139-146). Springer. https://doi.org/10.1007/978-981-19-0108-9_15

Link DOI | Link Google Scholar

Ursani, Z., & Ursani, A.A. (2023). The theory of probabilistic hierarchical learning for classification. Annals of Emerging Technologies in Computing, 7(1), 61-74. https://doi.org/10.33166/AETiC.2023.01.005

Link DOI | Link Google Scholar

Vila, E.M.S., & Penín, M.L. (2007). Introduction to special issue AI techniches applied in education. Inteligencia Artificial, 11(33), 7-12. https://doi.org/10.4114/ia.v11i33.914 

Link DOI | Link Google Scholar

Wang, X., Liu, Q., Pang, H., Tan, S.C., Lei, J., Wallace, M.P., & Li, L. (2023). What matters in AI-supported learning: A study of human-AI interactions in language learning using cluster analysis and epistemic network analysis. Computers and Education, 194, 104703. https://doi.org/10.1016/j.compedu.2022.104703

Link DOI | Link Google Scholar

Zhen, R., Song, W., He, Q., Cao, J., Shi, L., & Luo, J. (2023). Human-computer interaction system: A survey of talking-head generation. Electronics, 12(1), 218-239. https://doi.org/10.3390/electronics12010218

Link DOI | Link Google Scholar

Zhou, W. (2023). The development system of local music teaching materials based on deep learning. Optik, 273, 170421. https://doi.org/10.1016/j.ijleo.2022.170421

Link DOI | Link Google Scholar

Crossmark

Technical information

Received: 09-02-2023

Revised: 25-03-2023

Accepted: 02-05-2023

OnlineFirst: 30-06-2023

Publication date: 01-10-2023

Article revision time: 44 days | Average time revision issue 77: 32 days

Article acceptance time: 82 days | Average time of acceptance issue 77: 76 days

Preprint editing time: 189 days | Average editing time preprint issue 77: 183 days

Article editing time: 234 days | Average editing time issue 77: 228 days

Metrics

Metrics of this article

Views: 122290

Abstract readings: 114757

PDF downloads: 7533

Full metrics of Comunicar 77

Views: 1097798

Abstract readings: 1065652

PDF downloads: 32146

Cited by

Cites in Web of Science

Currently there are no citations to this document

Cites in Scopus

Currently there are no citations to this document

Cites in Google Scholar

Incidencias de la inteligencia artificial en la educación MAT De La Cruz, EMM Benites, CGC Cachinelli… - RECIMUNDO, 2023 - recimundo.com

https://recimundo.com/index.php/es/article/view/2045

Download

Alternative metrics

How to cite

Sanabria-Navarro, J., Silveira-Pérez, Y., Pérez-Bravo, D., & de-Jesús-Cortina-Núñez, M. (2023). Incidences of artificial intelligence in contemporary education. [Incidencias de la inteligencia artificial en la educación contemporánea]. Comunicar, 77, 97-107. https://doi.org/10.3916/C77-2023-08

Share

           

Oxbridge Publishing House

4 White House Way

B91 1SE Sollihul United Kingdom

Administration

Editorial office

Creative Commons

This website uses cookies to obtain statistical data on the navigation of its users. If you continue to browse we consider that you accept its use. +info X