Palabras clave

Vacuna, vacunación, emociones, redes sociales, Facebook, Brasil

Resumen

Las vacunas son un recurso de salud pública esencial para la contención de enfermedades y la reducción de las tasas de mortalidad asociadas. Con la aparición de la COVID-19, los debates públicos sobre los temas de las vacunas y los procesos de vacunación se convirtieron en temas importantes en diversos medios y plataformas de redes sociales. En este artículo, nuestro objetivo fue identificar y reflexionar sobre las emociones evocadas en el público brasileño con respecto a la vacuna COVID-19 durante 2020 y 2021 en Facebook. Para lograr esto, utilizamos la interfaz gráfica de Crowdtangle para extraer copias completas de las publicaciones realizadas por los perfiles públicos de Facebook durante este período de tiempo, de las cuales se seleccionó para el análisis una muestra aleatoria de 1.067 publicaciones. La identificación de las emociones se realizó utilizando los descriptores de Red de Interacción Hombre-Máquina en la Emoción (Human-Machine Interaction Network on Emotion, HUMAINE) como referencia. Luego, las emociones se agruparon en categorías siguiendo el Modelo de Afecto Central (Core Affect Model). El análisis y la interpretación de los datos indicaron una prevalencia de emociones positivas relacionadas a las vacunas, como confianza, interés y esperanza, en el escenario doméstico brasileño. También se expresaron emociones negativas como preocupación y desaprobación, aunque en referencia a cuestiones contextuales (por ejemplo, la propagación de COVID-19, retrasos en el acceso a la vacuna y la aparición de nuevas variantes) y figuras públicas, como el presidente de Brasil.

Ver infografía

Referencias

Ahmed, S. (2014). The cultural politics of emotion. Edinburgh University Press. https://doi.org/10.4324/9780203700372

Link DOI | Link Google Scholar

Aman, S., & Szpakowicz, S. (2007). Identifying expressions of emotion in text. In V. Matousek, & P. Mautner (Eds.), Text, speech and dialogue. Lecture notes in computer Science (pp. 196-205). Springer. https://doi.org/10.1007/978-3-540-74628-7_27

Link DOI | Link Google Scholar

Avaaz & Sociedade Brasileira de Imunizações (Ed.) (2019). As fake news estão nos deixando doentes?

Link Google Scholar

Benevenuto, F., Ribeiro, F., & Araújo, M. (2015). Métodos para análise de sentimentos em mídias sociais. In Short course in the Brazilian Symposium on Multimedia and the Web (Webmedia) (pp. 1-30). https://bit.ly/3eiD3bF

Link Google Scholar

Berger, J., & Milkman, K.L. (2012). What makes online content viral? Journal of Marketing Research, 49(2), 192-205. https://doi.org/10.1509/jmr.10.0353

Link DOI | Link Google Scholar

Bok, K., Sitar, S., Graham, B.S., & Mascola, J.R. (2021). Accelerated COVID-19 vaccine development: Milestones, lessons, and prospects. Immunity, 54(8), 1636-1651. https://doi.org/10.1016/j.immuni.2021.07.017

Link DOI | Link Google Scholar

Calhoun, C. (2008). Putting emotions in their place. In V. Ruggiero, & N. Montagna (Eds.), Social movements: A read (pp. 289-301). Routledge student readers. https://bit.ly/3IFXhqP

Link Google Scholar

Chou, W.S., & Budenz, A. (2020). Considering emotion in COVID-19 vaccine communication: Addressing vaccine hesitancy and fostering vaccine confidence. Health Commun, 35(14), 1718-1722. https://doi.org/10.1080/10410236.2020.1838096

Link DOI | Link Google Scholar

Clarke, S., Hoggett, P., & Thompson, S. (2006). Emotion, politics and society. Palgrave Macmillan. https://doi.org/10.1057/9780230627895

Link DOI | Link Google Scholar

Costa, T., & Silva, E.A. (2022). Narrativas antivacinas e a crise de confiança em algumas instituições. Revista Eletrônica de Comunicação, Informação e Inovação em Saúde, 16(2), 281-297. https://doi.org/10.29397/reciis.v16i2.3229

Link DOI | Link Google Scholar

Devillers, L., Vidrascu, L., & Lamel, L. (2005). Challenges in real-life emotion annotation and machine learning based detection. Neural Netw, 8(4), 407-22. https://doi.org/10.1016/j.neunet.2005.03.007

Link DOI | Link Google Scholar

Douglas-Cowie, E., Cowie, R., Sneddon, I., Cox, C., Lowry, O., McRorie, M., Martin, J., Devillers, L., Abrilian, S., Batliner, A., Amir, N., & Karpouzis, K. (2007). The HUMAINE database: Addressing the collection and annotation of naturalistic and induced emotional data. In A.C.R. Paiva, R. Prada, & R.W. Picard (Eds.), Affective computing and intelligent interaction (pp. 488-500). Springer. https://doi.org/10.1007/978-3-540-74889-2_43

Link DOI | Link Google Scholar

Duarte, T.B. (2020). Ignoring scientific advice during the Covid-19 pandemic: Bolsonaro’s actions and discourse. Tapuya: Latin American Science, Technology and Society, 3(1), 288-291. https://doi.org/10.1080/25729861.2020.1767492

Link DOI | Link Google Scholar

Dubé, E., Vivion, M., & MacDonald, N.E. (2015). Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: Influence, impact and implications. Expert Rev Vaccines. 14(1), 99-117. https://doi.org/10.1586/14760584.2015.964212

Link DOI | Link Google Scholar

Gallup (Ed.) (2019). Wellcome Global Monitor 2018. https://bit.ly/3SvLmR3

Link Google Scholar

Gonçalves, G., Rocha, A., & Paes, A. (2022). Analisando as emoções dos tweets relacionados à Covid-19 no Rio de Janeiro. In L. Villas, T.H. Silva, D.L. Guidoni, G. Pereira-Rocha-Filho & V. Mota (Eds.), 2022: Anais do VI Workshop de Computação Urbana (pp. 210-223). SBC. https://doi.org/10.5753/courb.2022.223557

Link DOI | Link Google Scholar

Gonçalves, P., Araújo, M., Benevenuto, F., & Cha, M. (2013). Comparing and combining sentiment analysis methods. In M. Muthukrishnan, A. El Abbadi & B. Krishnamurthy (Ed.), COSN’13: Proceedings of the first ACM conference on online social networks (pp. 27-38). Association for Computing Machinery. https://doi.org/10.1145/2512938.2512951

Link DOI | Link Google Scholar

Greyling, T., & Rossouw, S. (2022). Positive attitudes towards COVID-19 vaccines: A cross-country analysis. PLoS ONE, 17(3), 1-25. https://doi.org/10.1371/journal.pone.0264994

Link DOI | Link Google Scholar

Hu, T., Wang, S., Luo, W., Zhang, M., Huang, X., Yan, Y., Liu, R., Ly, K., Kacker, V., She, B., & Li, Z. (2021). Revealing public opinion towards COVID-19 vaccines with Twitter Data in the United States: A spatiotemporal perspective. J Med Internet Res, 23(9), 1-17. https://doi.org/10.1101/2021.06.02.21258233

Link DOI | Link Google Scholar

Kennedy, J. (2020). Vaccine hesitancy: A growing concern. Pediatric Drugs, 22(2), 105-111. https://doi.org/10.1007/s40272-020-00385-4

Link DOI | Link Google Scholar

Kwok, S.W.H., Vadde S.K., & Wang, G. (2021). Tweet topics and sentiments relating to COVID-19 vaccination among australian Twitter users: Machine learning analysis. J Med Internet Res., 23(5), 1-16. https://doi.org/10.2196/26953

Link DOI | Link Google Scholar

Mahyoob, M., Algaraady, J., Alrahiali, M., & Alblwi, A. (2022). Sentiment analysis of public tweets towards the emergence of SARS-CoV-2 Omicron variant: A social media analytics framework. engineering, Technology & Applied Science Research, 12(3), 8525-8531. https://doi.org/10.48084/etasr.4865

Link DOI | Link Google Scholar

Martin, J.C., Caridakis, G., Devillers, L., Karpouzis, K., & Abrilian, S. (2009). Manual annotation and automatic image processing of multimodal emotional behaviors: Validating the annotation of TV interviews. Pers Ubiquit Comput, 13, 69-76. https://doi.org/10.1007/s00779-007-0167-y

Link DOI | Link Google Scholar

Massarani, L., Leal, T., Waltz, I., & Medeiros, A. (2021). Infodemia, desinformação e vacinas: a circulação de conteúdos em redes sociais antes e depois da COVID-19. Liinc Em Revista, 17(1), 1-23. https://doi.org/10.18617/liinc.v17i1.5689

Link DOI | Link Google Scholar

Milani, L.R.N., & Busato, I.M.S. (2021). Causas e consequências da redução da cobertura vacinal no Brasil. Revista de Saúde Pública do Paraná, 4(2), 157-171. https://doi.org/10.32811/25954482-2021v4n2p157

Link DOI | Link Google Scholar

Monselise, M., Chang, C.H., Ferreira, G., Yang, R., & Yang, C.C. (2021). Topics and sentiments of public concerns regarding COVID-19 vaccines: Social media trend analysis. J Med Internet Res, 23(10), 1-20. https://doi.org/10.2196/30765

Link DOI | Link Google Scholar

Nobre, R.K.M., & Guerra, L.D.S. (2021). Recusa e hesitação vacinal e os seus efeitos para os sistemas universais de saúde. Journal of Management & Primary Health Care, 12(spec), 1-2. https://doi.org/10.14295/jmphc.v12.1086

Link DOI | Link Google Scholar

Obeica, I.C.O., & Martins, D.M.S. (2022). Análise de sentimentos em tweets: Um estudo de caso sobre a opinião das pessoas em relação a vacina em tempos da pandemia do COVID-19. Caderno de estudos em Engenharia de Software. 4(1), 1-21. https://bit.ly/3DSfzEA

Link Google Scholar

Oliveira, T., Quinan, R., & Toth, J.P. (2020). Antivacina, fosfoetanolamina e Mineral Miracle Solution (MMS): mapeamento de fake sciences ligadas à saúde no Facebook. Revista Eletrônica de Comunicação, Informação & Inovação em Saúde, 14(1), 90-111. https://doi.org/10.29397/reciis.v14i1.1988

Link DOI | Link Google Scholar

Orr, D., Baram-Tsabari, A., & Landsman, K. (2016). Social media as a platform for health-related public debates and discussions: The Polio vaccine on Facebook. Isr J Health Policy Res, 5(34), 1-11. https://doi.org/10.1186/s13584-016-0093-4

Link DOI | Link Google Scholar

Papacharissi, Z. (2014) Affective publics: Sentiment, technology and politics. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199999736.001.0001

Link DOI | Link Google Scholar

Penteado, C.L.C, Ferreira, M.A.S., Pereira, M.A., & Chaves, J.M.S. (2021). #Vacinar ou não, eis a questão! As emoções na disputa discursiva sobre a aprovação das vacinas contra a Covid-19 no Twitter. Política & Sociedade, 20(49), 104-133. https://doi.org/10.5007/2175-7984.2021.85145

Link DOI | Link Google Scholar

Potkay, A. (2007). The story of joy: from the Bible to late Romanticism. Cambridge University Press.

Link Google Scholar

Rahmanti, A.R., Chien, C.H., Nursetyo, A.A., Husnayain, A., Wiratama, B.S., Fuad, A., Yang, H.C., & Li, Y.C.J. (2022). Social media sentiment analysis to monitor the performance of vaccination coverage during the early phase of the national COVID-19 vaccine rollout. Computer Methods and Programs in Biomedicine, 221, 106838. https://doi.org/10.1016/j.cmpb.2022.106838

Link DOI | Link Google Scholar

Rezende, C.B., & Coelho, M.C. (2010). Antropologia das emoções. Editora FGV. https://bit.ly/42nIj1V

Link Google Scholar

Rodas, C.M., Barros, S.E.T., Souza, R.A.S., & Vidotti, S.A.B.G. (2022). Análise de sentimentos sobre as vacinas contra Covid-19: Um estudo com algoritmo de machine learning em postagens no twitter. Rev. Saúde Digital Tec. Educ., 7(3), 24-44. https://bit.ly/3RdNNoT

Link Google Scholar

Rowe, S., Massarani, L., Gonçalves, W., & Luz, R. (2023). Emotion in informal learning as mediated action: Cultural, interpersonal and personal lenses. International Journal of Studies in Education and Science, 4(1), 73-99. https://doi.org/10.46328/ijses.50

Link DOI | Link Google Scholar

Russell, J.A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145-172. https://doi.org/10.1037/0033-295X.110.1.145

Link DOI | Link Google Scholar

Russell, J.A. (2009). Emotion, core affect, and psychological construction. Cognition & Emotion, 23(7), 1259-1283. https://doi.org/10.1080/02699930902809375

Link DOI | Link Google Scholar

Santos, F.C., & Cypriano, C.P. (2014). Redes sociais, redes de sociabilidade. Revista Brasileira de Ciências Sociais, 29(85), 63-78. https://doi.org/10.1590/S0102-69092014000200005

Link DOI | Link Google Scholar

Schröder, M., Pirker, H., & Lamolle, M. (2006). First suggestions for an emotion annotation and representation language. In Proceedings of LREC 2006 Workshop on corpora for research on emotion and affect (pp. 88-92). https://bit.ly/3r2fruE

Link Google Scholar

Serrano-Puche, J. (2016). Internet and emotions: New trends in an emerging field of research. [Internet y emociones: nuevas tendencias en un campo de investigación emergente]. Comunicar, 46, 19-26. https://doi.org/10.3916/C46-2016-02

Link DOI | Link Google Scholar

Siegert, I., Böck, R., & Wendemuth, A. (2014). Inter-rater reliability for emotion annotation in human-computer interaction: Comparison and methodological improvements. J Multimodal user interfaces, 8(1), 17-28. https://doi.org/10.1007/s12193-013-0129-9

Link DOI | Link Google Scholar

We Are Social (Ed.) (2022). Digital 2022 global overview report. Hootsuite. https://bit.ly/3DQEKaC

Link Google Scholar

World Health Organization (Ed.) (2019). Ten threats to global health in 2019. https://bit.ly/3xMP6Vd

Link Google Scholar

Crossmark

Ficha técnica

Recibido: 03-12-2022

Revisado: 04-01-2022

Aceptado: 23-02-2023

OnlineFirst: 30-05-2023

Fecha publicación: 01-07-2023

Tiempo de revisión del artículo : -333 (en días) | Media de tiempo de revisión de los manuscritos del número 76: -6 (en días)

Tiempo de aceptación del artículo: 82 (en días) | Media tiempo aceptación de los manuscritos del número 76: 72 (en días)

Tiempo de edición OnlineFirst: 165 (en días) | Media tiempo edición de los OnlineFirst del número 76: 155 (en días)

Tiempo de publicacicón final del artículo: 210 (en días) | Media tiempo de publicación final de los articulos del número 76: 200 (en días)

Métricas

Métricas de este artículo

Vistas: 43386

Lectura del abstract: 42289

Descargas del PDF: 1097

Métricas completas de Comunicar 76

Vistas: 485019

Lectura del abstract: 473405

Descargas del PDF: 11614

Citado por

Citas en Web of Science

Actualmente no existen citas hacia este documento

Citas en Scopus

Actualmente no existen citas hacia este documento

Citas en Google Scholar

Actualmente no existen citas hacia este documento

Descarga

Métricas alternativas

Cómo citar

Fernandes-de-Oliveira, G., Massarani, L., Oliveira, T., Scalfi, G., & Alves-dos-Santos-Junior, M. (2023). The COVID-19 vaccine on Facebook: A study of emotions expressed by the Brazilian public. [Vacuna contra COVID-19 en Facebook: Un estudio sobre las emociones expresadas por el público brasileño]. Comunicar, 76, 119-130. https://doi.org/10.3916/C76-2023-10

Compartir

           

Oxbridge Publishing House

4 White House Way

B91 1SE Sollihul Reino Unido

Administración

Redacción

Creative Commons

Esta web utiliza cookies para obtener datos estadísticos de la navegación de sus usuarios. Si continúas navegando consideramos que aceptas su uso. +info X