Keywords

Vaccine, vaccination, emotions, social networks, Facebook, Brazil

Abstract

Vaccines are an essential public health resource for disease containment and reduction of associated mortality rates. With the emergence of COVID-19, public debates on the themes of vaccines and vaccination processes became important topics on diverse media and social networking platforms. In this article, our objective was to identify and reflect on the emotions evoked in the Brazilian public with respect to the COVID-19 vaccine during 2020 and 2021 on Facebook. To achieve this, we used the Crowdtangle graphical interface to extract complete copies of posts made by public Facebook profiles during this timeframe, from which a random sample of 1,067 posts was selected for analysis. Identification of emotions was performed using the Human-Machine Interaction Network on Emotion (HUMAINE) descriptors as a baseline reference. Emotions were then grouped into categories following Core Affect Model guidelines. Data analysis and interpretation indicated a prevalence of positive emotions such as trust, interest, and hope directed toward vaccines in the Brazilian domestic scenario. Negative emotions such as worry and disapproval were also expressed, albeit in reference to contextual issues (for example, the spread of COVID-19, delays in vaccine access, and the emergence of new variants) and public figures, such as the President of Brazil.

View infography

References

Ahmed, S. (2014). The cultural politics of emotion. Edinburgh University Press. https://doi.org/10.4324/9780203700372

Link DOI | Link Google Scholar

Aman, S., & Szpakowicz, S. (2007). Identifying expressions of emotion in text. In V. Matousek, & P. Mautner (Eds.), Text, speech and dialogue. Lecture notes in computer Science (pp. 196-205). Springer. https://doi.org/10.1007/978-3-540-74628-7_27

Link DOI | Link Google Scholar

Avaaz & Sociedade Brasileira de Imunizações (Ed.) (2019). As fake news estão nos deixando doentes?

Link Google Scholar

Benevenuto, F., Ribeiro, F., & Araújo, M. (2015). Métodos para análise de sentimentos em mídias sociais. In Short course in the Brazilian Symposium on Multimedia and the Web (Webmedia) (pp. 1-30). https://bit.ly/3eiD3bF

Link Google Scholar

Berger, J., & Milkman, K.L. (2012). What makes online content viral? Journal of Marketing Research, 49(2), 192-205. https://doi.org/10.1509/jmr.10.0353

Link DOI | Link Google Scholar

Bok, K., Sitar, S., Graham, B.S., & Mascola, J.R. (2021). Accelerated COVID-19 vaccine development: Milestones, lessons, and prospects. Immunity, 54(8), 1636-1651. https://doi.org/10.1016/j.immuni.2021.07.017

Link DOI | Link Google Scholar

Calhoun, C. (2008). Putting emotions in their place. In V. Ruggiero, & N. Montagna (Eds.), Social movements: A read (pp. 289-301). Routledge student readers. https://bit.ly/3IFXhqP

Link Google Scholar

Chou, W.S., & Budenz, A. (2020). Considering emotion in COVID-19 vaccine communication: Addressing vaccine hesitancy and fostering vaccine confidence. Health Commun, 35(14), 1718-1722. https://doi.org/10.1080/10410236.2020.1838096

Link DOI | Link Google Scholar

Clarke, S., Hoggett, P., & Thompson, S. (2006). Emotion, politics and society. Palgrave Macmillan. https://doi.org/10.1057/9780230627895

Link DOI | Link Google Scholar

Costa, T., & Silva, E.A. (2022). Narrativas antivacinas e a crise de confiança em algumas instituições. Revista Eletrônica de Comunicação, Informação e Inovação em Saúde, 16(2), 281-297. https://doi.org/10.29397/reciis.v16i2.3229

Link DOI | Link Google Scholar

Devillers, L., Vidrascu, L., & Lamel, L. (2005). Challenges in real-life emotion annotation and machine learning based detection. Neural Netw, 8(4), 407-22. https://doi.org/10.1016/j.neunet.2005.03.007

Link DOI | Link Google Scholar

Douglas-Cowie, E., Cowie, R., Sneddon, I., Cox, C., Lowry, O., McRorie, M., Martin, J., Devillers, L., Abrilian, S., Batliner, A., Amir, N., & Karpouzis, K. (2007). The HUMAINE database: Addressing the collection and annotation of naturalistic and induced emotional data. In A.C.R. Paiva, R. Prada, & R.W. Picard (Eds.), Affective computing and intelligent interaction (pp. 488-500). Springer. https://doi.org/10.1007/978-3-540-74889-2_43

Link DOI | Link Google Scholar

Duarte, T.B. (2020). Ignoring scientific advice during the Covid-19 pandemic: Bolsonaro’s actions and discourse. Tapuya: Latin American Science, Technology and Society, 3(1), 288-291. https://doi.org/10.1080/25729861.2020.1767492

Link DOI | Link Google Scholar

Dubé, E., Vivion, M., & MacDonald, N.E. (2015). Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: Influence, impact and implications. Expert Rev Vaccines. 14(1), 99-117. https://doi.org/10.1586/14760584.2015.964212

Link DOI | Link Google Scholar

Gallup (Ed.) (2019). Wellcome Global Monitor 2018. https://bit.ly/3SvLmR3

Link Google Scholar

Gonçalves, G., Rocha, A., & Paes, A. (2022). Analisando as emoções dos tweets relacionados à Covid-19 no Rio de Janeiro. In L. Villas, T.H. Silva, D.L. Guidoni, G. Pereira-Rocha-Filho & V. Mota (Eds.), 2022: Anais do VI Workshop de Computação Urbana (pp. 210-223). SBC. https://doi.org/10.5753/courb.2022.223557

Link DOI | Link Google Scholar

Gonçalves, P., Araújo, M., Benevenuto, F., & Cha, M. (2013). Comparing and combining sentiment analysis methods. In M. Muthukrishnan, A. El Abbadi & B. Krishnamurthy (Ed.), COSN’13: Proceedings of the first ACM conference on online social networks (pp. 27-38). Association for Computing Machinery. https://doi.org/10.1145/2512938.2512951

Link DOI | Link Google Scholar

Greyling, T., & Rossouw, S. (2022). Positive attitudes towards COVID-19 vaccines: A cross-country analysis. PLoS ONE, 17(3), 1-25. https://doi.org/10.1371/journal.pone.0264994

Link DOI | Link Google Scholar

Hu, T., Wang, S., Luo, W., Zhang, M., Huang, X., Yan, Y., Liu, R., Ly, K., Kacker, V., She, B., & Li, Z. (2021). Revealing public opinion towards COVID-19 vaccines with Twitter Data in the United States: A spatiotemporal perspective. J Med Internet Res, 23(9), 1-17. https://doi.org/10.1101/2021.06.02.21258233

Link DOI | Link Google Scholar

Kennedy, J. (2020). Vaccine hesitancy: A growing concern. Pediatric Drugs, 22(2), 105-111. https://doi.org/10.1007/s40272-020-00385-4

Link DOI | Link Google Scholar

Kwok, S.W.H., Vadde S.K., & Wang, G. (2021). Tweet topics and sentiments relating to COVID-19 vaccination among australian Twitter users: Machine learning analysis. J Med Internet Res., 23(5), 1-16. https://doi.org/10.2196/26953

Link DOI | Link Google Scholar

Mahyoob, M., Algaraady, J., Alrahiali, M., & Alblwi, A. (2022). Sentiment analysis of public tweets towards the emergence of SARS-CoV-2 Omicron variant: A social media analytics framework. engineering, Technology & Applied Science Research, 12(3), 8525-8531. https://doi.org/10.48084/etasr.4865

Link DOI | Link Google Scholar

Martin, J.C., Caridakis, G., Devillers, L., Karpouzis, K., & Abrilian, S. (2009). Manual annotation and automatic image processing of multimodal emotional behaviors: Validating the annotation of TV interviews. Pers Ubiquit Comput, 13, 69-76. https://doi.org/10.1007/s00779-007-0167-y

Link DOI | Link Google Scholar

Massarani, L., Leal, T., Waltz, I., & Medeiros, A. (2021). Infodemia, desinformação e vacinas: a circulação de conteúdos em redes sociais antes e depois da COVID-19. Liinc Em Revista, 17(1), 1-23. https://doi.org/10.18617/liinc.v17i1.5689

Link DOI | Link Google Scholar

Milani, L.R.N., & Busato, I.M.S. (2021). Causas e consequências da redução da cobertura vacinal no Brasil. Revista de Saúde Pública do Paraná, 4(2), 157-171. https://doi.org/10.32811/25954482-2021v4n2p157

Link DOI | Link Google Scholar

Monselise, M., Chang, C.H., Ferreira, G., Yang, R., & Yang, C.C. (2021). Topics and sentiments of public concerns regarding COVID-19 vaccines: Social media trend analysis. J Med Internet Res, 23(10), 1-20. https://doi.org/10.2196/30765

Link DOI | Link Google Scholar

Nobre, R.K.M., & Guerra, L.D.S. (2021). Recusa e hesitação vacinal e os seus efeitos para os sistemas universais de saúde. Journal of Management & Primary Health Care, 12(spec), 1-2. https://doi.org/10.14295/jmphc.v12.1086

Link DOI | Link Google Scholar

Obeica, I.C.O., & Martins, D.M.S. (2022). Análise de sentimentos em tweets: Um estudo de caso sobre a opinião das pessoas em relação a vacina em tempos da pandemia do COVID-19. Caderno de estudos em Engenharia de Software. 4(1), 1-21. https://bit.ly/3DSfzEA

Link Google Scholar

Oliveira, T., Quinan, R., & Toth, J.P. (2020). Antivacina, fosfoetanolamina e Mineral Miracle Solution (MMS): mapeamento de fake sciences ligadas à saúde no Facebook. Revista Eletrônica de Comunicação, Informação & Inovação em Saúde, 14(1), 90-111. https://doi.org/10.29397/reciis.v14i1.1988

Link DOI | Link Google Scholar

Orr, D., Baram-Tsabari, A., & Landsman, K. (2016). Social media as a platform for health-related public debates and discussions: The Polio vaccine on Facebook. Isr J Health Policy Res, 5(34), 1-11. https://doi.org/10.1186/s13584-016-0093-4

Link DOI | Link Google Scholar

Papacharissi, Z. (2014) Affective publics: Sentiment, technology and politics. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199999736.001.0001

Link DOI | Link Google Scholar

Penteado, C.L.C, Ferreira, M.A.S., Pereira, M.A., & Chaves, J.M.S. (2021). #Vacinar ou não, eis a questão! As emoções na disputa discursiva sobre a aprovação das vacinas contra a Covid-19 no Twitter. Política & Sociedade, 20(49), 104-133. https://doi.org/10.5007/2175-7984.2021.85145

Link DOI | Link Google Scholar

Potkay, A. (2007). The story of joy: from the Bible to late Romanticism. Cambridge University Press.

Link Google Scholar

Rahmanti, A.R., Chien, C.H., Nursetyo, A.A., Husnayain, A., Wiratama, B.S., Fuad, A., Yang, H.C., & Li, Y.C.J. (2022). Social media sentiment analysis to monitor the performance of vaccination coverage during the early phase of the national COVID-19 vaccine rollout. Computer Methods and Programs in Biomedicine, 221, 106838. https://doi.org/10.1016/j.cmpb.2022.106838

Link DOI | Link Google Scholar

Rezende, C.B., & Coelho, M.C. (2010). Antropologia das emoções. Editora FGV. https://bit.ly/42nIj1V

Link Google Scholar

Rodas, C.M., Barros, S.E.T., Souza, R.A.S., & Vidotti, S.A.B.G. (2022). Análise de sentimentos sobre as vacinas contra Covid-19: Um estudo com algoritmo de machine learning em postagens no twitter. Rev. Saúde Digital Tec. Educ., 7(3), 24-44. https://bit.ly/3RdNNoT

Link Google Scholar

Rowe, S., Massarani, L., Gonçalves, W., & Luz, R. (2023). Emotion in informal learning as mediated action: Cultural, interpersonal and personal lenses. International Journal of Studies in Education and Science, 4(1), 73-99. https://doi.org/10.46328/ijses.50

Link DOI | Link Google Scholar

Russell, J.A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145-172. https://doi.org/10.1037/0033-295X.110.1.145

Link DOI | Link Google Scholar

Russell, J.A. (2009). Emotion, core affect, and psychological construction. Cognition & Emotion, 23(7), 1259-1283. https://doi.org/10.1080/02699930902809375

Link DOI | Link Google Scholar

Santos, F.C., & Cypriano, C.P. (2014). Redes sociais, redes de sociabilidade. Revista Brasileira de Ciências Sociais, 29(85), 63-78. https://doi.org/10.1590/S0102-69092014000200005

Link DOI | Link Google Scholar

Schröder, M., Pirker, H., & Lamolle, M. (2006). First suggestions for an emotion annotation and representation language. In Proceedings of LREC 2006 Workshop on corpora for research on emotion and affect (pp. 88-92). https://bit.ly/3r2fruE

Link Google Scholar

Serrano-Puche, J. (2016). Internet and emotions: New trends in an emerging field of research. [Internet y emociones: nuevas tendencias en un campo de investigación emergente]. Comunicar, 46, 19-26. https://doi.org/10.3916/C46-2016-02

Link DOI | Link Google Scholar

Siegert, I., Böck, R., & Wendemuth, A. (2014). Inter-rater reliability for emotion annotation in human-computer interaction: Comparison and methodological improvements. J Multimodal user interfaces, 8(1), 17-28. https://doi.org/10.1007/s12193-013-0129-9

Link DOI | Link Google Scholar

We Are Social (Ed.) (2022). Digital 2022 global overview report. Hootsuite. https://bit.ly/3DQEKaC

Link Google Scholar

World Health Organization (Ed.) (2019). Ten threats to global health in 2019. https://bit.ly/3xMP6Vd

Link Google Scholar

Technical information

Received: 03-12-2022

Revised: 04-01-2022

Accepted: 23-02-2023

OnlineFirst: 30-05-2023

Publication date: 01-07-2023

Article revision time: -333 days | Average time revision issue 76: -6 days

Article acceptance time: 82 days | Average time of acceptance issue 76: 72 days

Preprint editing time: 165 days | Average editing time preprint issue 76: 155 days

Article editing time: 210 days | Average editing time issue 76: 200 days

Metrics

Metrics of this article

Views: 45746

Abstract readings: 44610

PDF downloads: 1136

Full metrics of Comunicar 76

Views: 509451

Abstract readings: 497185

PDF downloads: 12266

Cited by

Cites in Web of Science

Currently there are no citations to this document

Cites in Scopus

Currently there are no citations to this document

Cites in Google Scholar

Currently there are no citations to this document

Download

Alternative metrics

How to cite

Fernandes-de-Oliveira, G., Massarani, L., Oliveira, T., Scalfi, G., & Alves-dos-Santos-Junior, M. (2023). The COVID-19 vaccine on Facebook: A study of emotions expressed by the Brazilian public. [Vacuna contra COVID-19 en Facebook: Un estudio sobre las emociones expresadas por el público brasileño]. Comunicar, 76, 119-130. https://doi.org/10.3916/C76-2023-10

Share

           

Oxbridge Publishing House

4 White House Way

B91 1SE Sollihul United Kingdom

Administration

Editorial office

Creative Commons

This website uses cookies to obtain statistical data on the navigation of its users. If you continue to browse we consider that you accept its use. +info X